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Abstract

An immersogeometric formulation is proposed to simulate free-surface flows around structures with complex geometry. The
fluid–fluid interface (air–water interface) is handled by the level set method, while the fluid–structure interface is handled
through an immersogeometric approach by immersing structures into non-boundary-fitted meshes and enforcing Dirichlet
boundary conditions weakly. Residual-based variational multiscale method (RBVMS) is employed to stabilize the coupled
Navier–Stokes equations of incompressible flows and level set convection equation. Other level set techniques, including re-
distancing and mass balancing, are also incorporated into the immersed formulation. Adaptive quadrature rule is used to
better capture the geometry of the immersed structure boundary by accurately integrating the intersected background elements.
Generalized-α method is adopted for time integration, which results in a two-stage predictor multi-corrector algorithm. GMRES
solver preconditioned with block Jacobian matrices of individual fluid and level set subproblems is used for solving the coupled
linear systems arising from the multi-corrector stage. The capability and accuracy of the proposed method are assessed by
simulating three challenging marine engineering problems, which are a solitary wave impacting a stationary platform, dam break
with an obstacle, and planing of a DTMB 5415 ship model. A refinement study is performed. The predictions of key quantities
of interest by the proposed formulation are in good agreement with experimental results and boundary-fitted simulation results
from others. The proposed formulation has great potential for wide applications in marine engineering problems.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Free-surface flow simulations play an essential role in the design and optimization of many marine engineering
structures, such as floating offshore wind turbines, tidal turbines, ships, underwater vehicles, etc. In addition to
handling high Reynolds number turbulent flows, there are two key challenging problems in free-surface flow
simulations. One problem is how to treat the fluid–fluid interface, the associated large property ratio between two
fluid phases, pressure discontinuity, and possible violent topological interfacial changes. Another problem is how
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to treat the fluid–structure interface, which typically has complicated geometry for real engineering structures and
the surrounding thin boundary layers.

The methods of treating free-surface can be classified into two categories, interface-tracking and interface cap-
turing [1,2]. Interface-tracking methods, such as Arbitrary Lagrangian–Eulerian (ALE) methods [3], front-tracking
methods [4], boundary-integral methods [5], and Space–Time method [6], explicitly represent the free-surface by
using a deformable mesh that moves with the free-surface deformation. Interface-tracking methods possess higher
accuracy per degree-of-freedom and have been applied to several challenging problems in offshore engineering and
additive manufacturing [7,8]. However, mesh motion and re-meshing techniques are often required if the free-surface
undergoes singular topological changes, which can be very challenging for some scenarios. Interface-capturing
methods, including level set [9,10], front-capturing methods [11], volume of fluid (VOF) [12], phase field [13,14],
and diffuse-interface methods [15,16], define an auxiliary field in the computational domain and make use of an
implicit function to represent the free-surface. Although interface-capturing methods typically need higher mesh
resolution around the free-surface to compensate for the lower accuracy, they are more flexible and do not require
any mesh motion or re-meshing procedures. The free-surface topological changes can be automatically handled by
solving an additional scalar partial differential equation. Interface capturing methods have been widely applied to
a wide range of interfacial problems, including bubble dynamics [17–19], jet atomization [20], and free-surface
flows [21,22].

The methods of treating fluid–structure interface can also be classified into two categories, boundary-fitted
methods and immersed methods (or non-boundary-fitted methods). Among boundary-fitted methods, Arbitrary
Lagrangian–Eulerian (ALE) method [3] and Space–Time method [6] are the two frequently used approaches.
Both methods use meshes to represent the fluid–structure interface explicitly. One major difficulty of boundary-
fitted methods is that the automatic generation of high-quality volumetric meshes that conform to the complex
fluid–structure interface is difficult. It often requires intensive labor-processes, such as de-featuring, geometry
cleanup, and mesh manipulation, which are time-consuming in the design loop through analysis. In the context
of fluid–structure interaction simulations, sophisticated mesh motion and re-meshing techniques [23–25] (similar
to interface tracking methods) are often required, which makes the problem even more challenging. On the other
hand, immersed methods [26] make use of a non-boundary-fitted fluid mesh to approximate the solutions of the fluid
equations. Unlike the boundary-fitted methods, the fluid mesh can be independent of the surface representation. This
type of method releases the strict mesh conforming constraint, circumvents mesh motion and re-mesh procedures,
and simplifies the volumetric mesh generation significantly, especially for the structures with complex boundary
geometry. The first immersed boundary method can be found in [27], which deals with computational fluid dynamics
(CFD) analysis of heart valves with moving boundaries. Since that, the research on immersed methods has been
growing significantly. Some recent developments using immersed approach can be found in [28–34].

Although immersed methods for single-phase fluid flows around complex geometries can be widely found in the
literature, immersed methods based on variational principles for free-surface flows are still lacking. In this paper, an
immersed free-surface formulation is developed by integrating the immersogeometric methods developed in [35,36]
and the free-surface flow formulation developed in [37–41]. On the one hand, the terminology of immersogeometric
methods, inspired by isogeometric analysis [42,43], denotes the immersed methods that accurately represent
the immersed structure boundary to eliminate geometric errors. For example, immersogeometric methods can
directly immerse the boundary representation (B-rep) of CAD models into the non-body-fitted background fluid
mesh [44]. Some applications to heart valve modeling and compressible flow modeling of rotor-craft can be found in
[45–48]. In the present work, immersogeometric concept relies on the Finite Cell Method (FCM), which is
introduced by [49,50] and has been applied to single-phase flow computations in [51,52]. The FCM captures the
structure geometry in intersected elements by adaptive quadrature, which increases the accuracy by adding additional
levels of quadrature points. The adaptive quadrature scheme is based on the decomposition of each intersected
element into sub-cells, which can be efficiently organized in hierarchical tree data structures. Large number of
quadrature points in intersected elements are typically required in this method, but the implementation is extremely
flexible and robust. Although unstructured tetrahedral elements are used, FCM can work for almost any geometric
model. On the other hand, the techniques previously developed in [37,38,40,41] are adopted to model the free-
surface flow. In the formulation, the level set method is chosen to capture the free-surface because of its easiness of
implementation and ability to represent complicated free-surface shape by an implicit function. The level set field
is convected by the fluid velocity. The free-surface flow motion is governed by unified Navier–Stokes equations of
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incompressible flows, in which the fluid properties are evaluated with the assistance of the level set field. Residual-
based variational multi-scale formulation (RBVMS) [53], which is widely used for turbulence modeling in CFD
simulations [54–56], is adopted to solve the coupled Navier–Stokes and level set equations. The combination of level
set and RBVMS has been proved to be an effective technique to model multi-phase flows. The applications include
offshore floating wind turbines [38,39], tidal turbines [37], bubble dynamics [57], and metallic manufacturing [58].
Immersed methods by nature prevent the application of strong enforcement for Dirichlet boundary conditions. For
that, a Nitsche-type weak enforcement of essential boundary conditions (weak BC) [59], which can be applied to
both boundary-fitted and non-boundary-fitted meshes, is incorporated into the current immersogeometric formulation
for free-surface flows.

The paper is structured as follows. Section 2 presents the continuous governing equations of free-surface flows,
which include Navier–Stokes equations of incompressible flows and level set convection equation. Section 3 presents
semi-discrete formulation, which including RBVMS, re-distancing, mass balancing, and weak BCs. Section 4
presents the tetrahedral finite cell method. Section 5 presents the time integration and linear solver. Section 6 presents
the application of the proposed formulation to three challenging problems in marine engineering. The first problem
is a solitary wave impacting a stationary platform. The second problem is the dam break with an obstacle. The third
problem is the planing of a DTMB 5415 ship model. Simulated results are compared with experimental results and
computational results based on boundary-fitted methods from other researchers. Section 7 concludes the paper and
specifies the future research work.

2. Governing equations of free-surface flow

2.1. Level set method

In this section, we summarize the governing equations of free-surface flows based on level set method. Let
Ω ⊂ R3 denote air–water domain, Γ denote its boundary. In Ω , a scalar function φ(x, t) is defined at each point.
The free-surface is denoted by Γl , which is implicitly defined as

Γl = {x ∈ Ω | φ(x, t) = 0} (1)

At air subdomain Ωa and water subdomain Ωw, φ(x, t) is a signed distance function with respect to the free-
surface. In present work, φ(x, t) takes negative value in the air phase and positive value in the water phase,
namely,

Ωa = {x ∈ Ω | φ(x, t) < 0} (2)

Ωw = {x ∈ Ω | φ(x, t) > 0} (3)

For a given point in Ω , the fluid density ρ(φ) and viscosity µ(φ) can be computed as

ρ(φ) = ρa (1 − H (φ)) + ρw H (φ) (4)

µ(φ) = µa (1 − H (φ)) + µw H (φ) (5)

where ρa , µa are the density and viscosity of air, ρw, µw are the density and viscosity of water, respectively, and
H (φ) is the Heaviside function, defined by

H (φ) =

⎧⎨⎩
0 φ < 0
1
2 φ = 0
1 φ > 0

(6)

2.2. Navier–Stokes equations of incompressible flow

The free-surface flow motion is governed by the unified Navier–Stokes equations of the incompressible flows,
given as

ρ(φ)
(

∂u
∂t

+ u · ∇∇∇u − f
)

− ∇∇∇ · σσσ (u, p) = 0 in Ω (7)

∇∇∇ · u = 0 in Ω (8)
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u = ug on ΓD (9)

σσσ (u, p) · n = h on ΓN (10)

where u, p, and f are the fluid velocity, pressure, and the external force per unit mass, respectively. σσσ (u, p) is the
Cauchy stress tensor, defined as

σσσ (u, p) = −p I + 2µ(φ)εεε(u) (11)

where I is the identity tensor, and εεε(u) is the strain-rate tensor, defined as

εεε(u) =
1
2

(
∇∇∇u + ∇∇∇uT)

(12)

Eqs. (9) and (10) define the boundary conditions, where ug is the prescribed velocity on the Dirichlet boundary ΓD,
h is the traction vector on the Neumann boundary ΓN, and n is the unit normal vector pointing in the wall-outward
direction.

The level set field is convected by the fluid velocity, which can be modeled by means of an additional convection
equation, namely,

∂φ

∂t
+ u · ∇∇∇φ = 0 in Ω (13)

Eqs. (7)–(10), and Eq. (13) with appropriate initial conditions constitute the strong form governing equations of
free-surface flow at the continuous level.

3. Semi-discrete formulation

3.1. RBVMS

In the present work, residual-based variational multi-scale (RBVMS) formulation is utilized to solve the strong
form equations presented in the previous section. Consider a collection of disjoint elements {Ω e

}, ∪eΩ
e
⊂ R3, with

closure covering the fluid domain: Ω ⊂ ∪eΩ e. Note that Ω e is not necessarily a subset of Ω if a non-boundary-fitted
approach is utilized. Let Vh

u , Vh
p , and Vh

s denote discrete velocity, pressure, and level set trial function spaces, and
Wh

u , Wh
p , and Wh

s denote the corresponding test function spaces. The RBVMS formulation of free-surface flow is
stated as follows. Find uh

∈ Vh
u , ph

∈ Vh
p , and φh

∈ Vh
s such that for all wh

∈ Wh
u , qh

∈ Wh
p , and ηh

∈ Wh
s :

Bns
VMS

(
{wh, qh

}, {uh, ph
}
)
+ Bconv

VMS

(
ηh, φh)

− FVMS
(
{wh, qh

}
)

= 0 (14)

where Bns
VMS

(
{wh, qh

}, {uh, ph
}
)
, Bconv

VMS

(
ηh, φh

)
, and FVMS

(
{wh, qh

}
)

are given as

Bns
VMS

(
{wh, qh

}, {uh, ph
}
)

=

∫
Ω

wh
· ρ(φh)

(
∂uh

∂t
+ uh

· ∇∇∇uh
)

dΩ +

∫
Ω

εεε(wh) : σσσ
(
uh, ph) dΩ

+

∫
Ω

qh
∇∇∇ · uh dΩ

−

∑
e

∫
Ωe∩Ω

(
uh

· ∇∇∇wh
+

∇∇∇qh

ρ(φh)

)
· u′ dΩ

−

∑
e

∫
Ωe∩Ω

p′
∇∇∇ · wh dΩ +

∑
e

∫
Ωe∩Ω

wh
· (u′

· ∇∇∇uh) dΩ

−

∑
e

∫
Ωe∩Ω

∇∇∇wh

ρ(φh)
:
(
u′

⊗ u′
)

dΩ

+

∑
e

∫
Ωe∩Ω

κns
dc ∇∇∇wh

: ∇∇∇
suh dΩ (15)
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Bconv
VMS

(
ηh, φh)

=

∫
Ω

ηh
(

∂φh

∂t
+ uh

· ∇∇∇φh
)

dΩ

−

∑
e

∫
Ωe∩Ω

(
uh

· ∇∇∇ηh) φ′ dΩ

+

∑
e

∫
Ωe∩Ω

κc
dc ∇η · ∇φh dΩ (16)

FVMS
(
{wh, qh

}
)

=

∫
Ω

wh
· ρ(φh) f dΩ +

∫
ΓN

wh
· h dΓ (17)

where the fine scale velocity u′, fine scale pressure p′, and fine scale level set function φ′ are given as

u′
= −τM

(
ρ(φh)(

∂uh

∂t
+ uh

· ∇∇∇uh
− f) − ∇∇∇ · σσσ (uh, ph)

)
(18)

p′
= −ρ(φh)τC ∇∇∇ · uh (19)

φ′
= −τφ

(
∂φh

∂t
+ uh

· ∇∇∇φh
)

(20)

Eqs. (14)–(20) feature an extension of the RBVMS of single-phase turbulent flows, first introduced in [53], to
free-surface flows. The first two lines in Eq. (15) and the first line in Eq. (16) are the Galerkin formulation of
Navier–Stokes equations and level set convection equation, respectively. The rest terms can be interpreted as a
stabilized method or large eddy simulation (LES) turbulence model [53,60–65]. The stabilization parameters τM,
τC, and τφ are defined by

τM =

(
Ct

∆t2 + uh
· G uh

+ C I ν(φh)2 G : G
)−1/2

(21)

τC = (τM tr G)−1 (22)

τφ =

(
Ct

∆t2 + uh
· G uh

)−1/2

(23)

where ∆t is the time-step size, C I is a positive constant [66], ν(φh) = µ(φh)/ρ(φh) is the fluid kinematic viscosity,
G is the element metric tensor calculated by the mapping from the iso-parametric element to its physical counterpart.
It is defined as the following index notation (Einstein summation notation is used).

G i j =
∂ξk

∂xi

∂ξk

∂x j
(24)

where ξ is the parametric coordinates, tr G is the trace of G.
In order to further improve the stability for high Reynolds number turbulent free-surface flow simulations,

discontinuity capturing is used in our formulation. For that, two terms,
∑

e

∫
Ωe∩Ω κns

dc ∇∇∇wh
: ∇∇∇

suh dΩ and∑
e

∫
Ωe∩Ω κc

dc ∇ηh
· ∇φh dΩ , are added to Eqs. (15) and (16), where κns

dc and κc
dc are residual-based discontinuity

capturing parameters. The definitions can be found in [67].

3.2. Re-distancing and mass balancing

In numerical setting, the density and viscosity are calculated as

ρ(φh) = ρa
(
1 − Hϵ(φh)

)
+ ρw Hϵ(φh) (25)

µ(φh) = µa
(
1 − Hϵ(φh)

)
+ µw Hϵ(φh) (26)
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where Hϵ(φ) is the regularized Heaviside function, defined by

Hϵ(φh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 φh

≤ − ϵ

1
2

(
1 +

φh

ϵ
+

1
π

sin(
φhπ

ϵ
)
)

|φh
| < ϵ

1 φh
≥ + ϵ

(27)

where ϵ is the free-surface thickness, which scales with the element length around the free-surface, given as

ϵ = α

(
∇φh

∥∇φh∥
· G

∇φh

∥∇φh∥

)−1/2

. (28)

Using the regularized Heaviside function requires the level set field to satisfy the signed distance property.
However, the level set field may lose its signed distance property as being convected by fluid velocity. To recover
that, a re-distancing approach based on Eikonal equation with the constraint on the air–water interface is added to
the formulation. The Eikonal equation reads

∥∇φd∥ = 1 in Ωa (29)

∥∇φd∥ = 1 in Ωw (30)

φd = 0 on Γl (31)

where φd is the re-distanced level set field. In the present work, a pseudo-time t̃ that scales with element length
around the free-surface, is introduced to make the equation dynamic. Then, the strong form equation of the
re-distancing process can be stated as: given φh , find the φh

d satisfy the following equation

∂φd

∂ t̃
+ sign(φd )(∥∇φd∥ − 1) = 0 in Ω (32)

φd (x, t̃ = 0) = φ(x, t) in Ω (33)

VMS is employed to solve the above equation. The weak formulation of the re-distancing problem is stated as
followed: given φh , find φh

d , such that for all the test functions ηh
d ∈ Wh

s ,∫
Ω

ηd
h
(

∂φh
d

∂ t̃
+ Sϵ(φh

d )(∥∇φh
d ∥ − 1)

)
dΩ

+

∑
e

∫
Ωe∩Ω

τ d
φ Sϵ(φh

d )
∇φh

d

∥∇φh
d ∥

· ∇ηh
d

(
∂φh

d

∂ t̃
+ Sϵ(φh

d )(∥∇φh
d ∥ − 1)

)
dΩ

+

∑
e

∫
Ωe∩Ω

ηh
dλpen

∂ Hϵ

∂φh
d

(φh
d − φh) dΩ = 0 (34)

where Sϵ(φh
d ) = 2Hϵ(φh

d ) − 1 is the regularized sign function, Sϵ(φh
d ) ∇φh

d
∥∇φh

d ∥
is an equivalent “convective velocity”,

τ d
φ is a Streamline Upwind Petrov–Galerkin (SUPG) stabilization parameter [60]. λpen is a penalty parameter to

enforce the air–water interface, which is solved by Navier–Stokes and level set convection equations. With help of
∂ Hϵ

∂φh
d

, the penalty term is independent of mesh size [37] and only active around the free-surface.
Level set method by nature is not mass conservative. In order to restore the global mass balance, we shift the

level set field by a global constant φ′. The solution of φ′ is obtained by recovering the mass conservation equation,
which reads∫

Ω

∂ Hϵ(φh
d + φ′)
∂t

dΩ =

∫
∂Ω

Hϵ(φh
d + φ′)uh

· n d∂Ω (35)

The above equation is obtained by the global mass conservation law, given as∫
Ω

∂ρ(φh)
∂t

dΩ =

∫
∂Ω

ρ(φh)uh
· n d∂Ω (36)
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The above mass-balancing procedure is performed after the re-distancing process. This mass balancing scheme is
very efficient because only a scalar equation needs to be solved. Since the level set field is shifted by a global
constant, it does not change the signed distance property obtained in the re-distancing stage.

3.3. Variational consistent weak enforcement of Dirichlet boundary conditions

Strongly imposing Dirichlet boundary conditions around fluid–structure interface is not feasible in an immersed
approach. In the present work, the Dirichlet boundary condition is enforced weakly by using a Nitsche-based
method [59,68]. For that, Eq. (37) is added to the left hand side of Eq. (15) if no-slip boundary condition is used
and Eq. (38) is added to the left hand side of Eq. (15) if no-penetration boundary condition is used:

−

∫
ΓD

wh
·
(
σ (uh, ph)n

)
dΓ

−

∫
ΓD

(
2µ(φ)εεε(wh) n + qh n

)
·
(
uh

− ug
)

dΓ

+

∫
ΓD

τ Bwh
·
(
uh

− ug
)

dΓ (37)

−

∫
ΓD

wh
· n

(
σ (uh, ph) : (n ⊗ n)

)
dΓ

−

∫
ΓD

(
2µ(φ)εεε(wh) n + qh n

)
· n

(
uh

· n − ug · n
)

dΓ

+

∫
ΓD

τ Bwh
· n

(
uh

· n − ug · n
)

dΓ (38)

The above formulation can be derived by an augmented Lagrangian multiplier approach or a symmetric interior
penalty discontinuous Galerkin method. The first term and the second term in Eqs. (37) and (38) are the so-called
consistency and adjoint-consistency terms, respectively. The detailed interpretation of these terms can be found
in Bazilevs and Hughes [59]. The parameter τ B in the last term of Eqs. (37) and (38) is a penalty-like stabilization
parameter that helps to satisfy the Dirichlet boundary condition and improve the stability of the formulation. τ B

needs to be carefully chosen. If τ B is too large, the penalty term dominates the formulation, overshadowing the
variational consistency and resulting in an ill-conditioned stiffness matrix. If τ B is too small, the solution is not
stable. More discussions for the appropriate choice of τ B for immersed methods can be found [35]. In our paper,
τ B

= Cµ(φ)/µa is used, where C is a constant. Considering the structure boundary may intersect the free-surface,
τ B is scaled with µ(φ) to provide a bigger penalty in the water phase. In the present work, C is set to 103, which
is calibrated by the numerical experiments to achieve a good balance between accuracy and stability.

4. Tetrahedral finite cell method

The main challenge of immersed methods is the geometrically accurate evaluation of volume and surface integrals
in the variational formulation in intersected elements. The immersogeometric method in the present work largely
relies on the tetrahedral finite cell method (FCM), which uses a volume quadrature method based on recursive
subdivision of intersected elements and a surface quadrature method based on an independent surface mesh. In this
section, we briefly present the key techniques of FCM and an octree based point location query that can quickly
determine whether a quadrature point is located inside or outside the fluid domain.

4.1. Recursive quadrature points generation

Fig. 1 (extracted from [52]) shows the basic concept of FCM method for a 2D case. In FCM, the original
computational domain Ωphy is extended by a fictitious domain Ω f ict to an embedding domain Ω that can be easily
meshed. This introduces several elements (cut elements) that are intersected by the immersed structure boundary.
Following the idea from [69], we use a volume quadrature based on recursive subdivision of cut elements and a
surface quadrature using an independent surface mesh.

Accuracy of volume quadrature is important for capturing the immersed structure boundary. In present work,
recursive subdivision of cut elements is used. For the elements with all nodes inside the computational domain
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Fig. 1. Physical domain (gray region) is extended by fictitious domain (white region) by FCM [52].

Ωphy , standard 4-point quadrature rule is used for linear tetrahedron element. For the elements with all nodes
outside the computational domain Ωphy , no quadrature point is generated. For cut elements, an element is split
into 12 sub-tetrahedral elements recursively. For each sub-tetrahedron, 4-point quadrature is used. The recursive
process is performed until the pre-set recursive level is reached. For clarity, Fig. 2 shows a subdivision process
of cut elements of a triangular mesh up to level = 3. Enough recursive level is important for accurate geometry
representation of the immersed structure boundary. In present work, recursive level = 2 is chosen. Fig. 3(a) shows
the generated quadrature points with level = 1. The quadrature points inside computational domain Ωphy (green
points) are used in numerical integration, while quadrature points outside computational domain Ωphy (magenta
points) are discarded. Fig. 3(b) shows the degrees of freedom that will be included or discarded in the computation.
Please note that the nodes of cut elements which are outside the computational domain is important for enforcement
of Dirichlet boundary condition, so the degrees of freedom of these nodes still need to be solved, even though these
nodes also belong to some elements which are totally outside the computational domain Ωphy (magenta circles in
Fig. 3(b)). Only the degrees of freedom of nodes that do not belong to any cut elements will be discarded. For the
specific mesh shown in Fig. 3, the only degrees of freedom that will be discarded is the green circle in the center.

Another challenge is the surface integral in the weak BC formulation. The quadrature points of the surface
integration locate on an independent surface mesh. To perform the surface integration, the coordinates of these
surface quadrature points must then be located in the parameter space of the tetrahedral finite elements in which
they fall. This requires us to invert the mapping from the finite element parameter space to physical space. Basis
function values of their background volume elements and weak BC terms are then evaluated and integrated at these
surface quadrature points and interpolated by the volumetric element containing them. To speed up the process of
location query, an octree is constructed. The tetrahedral elements are represented by tight bounding boxes and are
sorted into a hierarchical octree. When we query the background element of quadrature points, most elements are
eliminated by the octree search. At the deepest level of octree, we need to calculate the parametric coordinate for
possible elements and judge whether this quadrature point fall in this element. Please note that it is necessary to
have enough surface mesh elements to get accurate surface integration.

4.2. In-out test by ray-tracing method

Following [52], we briefly present the in-out test for quadrature points. To speed up the in-out test, an octree
is constructed. Firstly, all the surface triangle elements are inserted into a hierarchical octree. Secondly, ray-octree
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Fig. 2. Recursive subdivision of cut elements of a triangular mesh (The red circle denotes the immersed structure boundary, blue elements
denote the cut elements in recursive subdivision). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Quadrature points in cut elements and degrees of freedom in fictitious domain (recursive level = 1). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

intersections are performed recursively to reduce the unnecessary ray-triangle intersections. Thirdly, ray-triangle
intersections are needed to judge whether ray intersect with possible triangles from the deepest level of the octree.
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Fig. 4. In-out test by octree search (example with quad-tree).

Fourthly, the number of intersection between ray and immersed surface mesh are counted, denoted by N . If the
number N is odd, the point is inside the surface. If the number N is even, the point is outside the surface. We assume
the immersed surface mesh is closed, so one ray is needed for the in-out test. Fig. 4 provides the explanation of
quad-tree with triangle elements.

5. Time integration

5.1. Generalized-α method

Generalized-α method [70,71] is used for time integration. In the generalized-α method, the residuals of free-
surface flow equations are evaluated with intermediate-level fluid velocity and level set solutions at each time step,
namely,

u̇n+αm = αm u̇n+1 + (1 − αm) u̇n (39)

un+α f = α f un+1 +
(
1 − α f

)
un (40)

φ̇n+αm = αm φ̇n+1 + (1 − αm) φ̇n (41)

φn+α f = α f φn+1 +
(
1 − α f

)
φn (42)

where the quantities with subscript n + 1 are the unknown solutions at time step n + 1, and the quantities with
superscript n are known solutions are the previous time step n. Besides, the relationship between nodal degrees of
freedom and their time derivatives are given by the following Newmark-β scheme.

un+1 = un + ∆t((1 − γ )u̇n + γ u̇n+1) (43)

φn+1 = φn + ∆t((1 − γ )φ̇n + γ φ̇n+1) (44)

In Eqs. (39)–(44), αm , α f , and γ are parameters of the Generalized-α and Newmark-β methods chosen based
on the unconditional stability and second-order accuracy. With the above definitions, the application of the time
integration of the coupled free-surface flow formulation leads to the following nonlinear equations at each time
step. ⎧⎪⎨⎪⎩

NM
(
u̇n+αm , pn+1, φ̇n+αm

)
= 0

NC
(
u̇n+αm , pn+1, φ̇n+αm

)
= 0

NL
(
u̇n+αm , pn+1, φ̇n+αm

)
= 0

(45)
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where NM , NC , and NL are the vectors of nodal residuals of fluid momentum, fluid continuity, and level set
convection equations, respectively. To solve the above equations, Newton’s method is adopted, which results in
the following two-stage predictor multi-corrector algorithm.

Predictor stage:

u̇0
n+1 =

γ − 1
γ

u̇n (46)

u0
n+1 = un (47)

p0
n+1 = pn (48)

φ̇0
n+1 =

γ − 1
γ

φ̇n (49)

φ0
n+1 = φn (50)

where the quantities with superscript 0 are initial guesses, and 0 denotes the initial value of the Newton-iteration
counter.

Multi-corrector stage: Repeat the following procedures until convergence.
1. Evaluate intermediate levels

u̇l
n+αm

= αm u̇l
n+1 + (1 − αm) u̇n (51)

ul
n+α f

= α f ul
n+1 +

(
1 − α f

)
un (52)

φ̇l
n+αm

= αm φ̇l
n+1 + (1 − αm) φ̇n (53)

φl
n+α f

= α f φ
l
n+1 +

(
1 − α f

)
φn (54)

where l is the Newton-iteration counter.
2. Use the solution of intermediate level to evaluate the right hand side residuals and the corresponding Jacobian

matrix.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ RM
∂u̇n+1

⏐⏐⏐
l
∆u̇l

n+1 +
∂ RM
∂pn+1

⏐⏐⏐
l
∆pl

n+1 +
∂ RM
∂φ̇n+1

⏐⏐⏐
l
∆φ̇l

n+1 = −Rl
M

∂ RC
∂u̇n+1

⏐⏐⏐
l
∆u̇l

n+1 +
∂ RC

∂pn+1

⏐⏐⏐
l
∆pl

n+1 +
∂ RC

∂φ̇n+1

⏐⏐⏐
l
∆φ̇l

n+1 = −Rl
C

∂ RL
∂u̇n+1

⏐⏐⏐
l
∆u̇l

n+1 +
∂ RL

∂pn+1

⏐⏐⏐
l
∆pl

n+1 +
∂ RL

∂φ̇n+1

⏐⏐⏐
l
∆φ̇l

n+1 = −Rl
L

(55)

The above linear equations are solved to get the increment of the velocity, pressure, and level set unknowns.
3. Correct the solutions as follows

u̇l+1
n+1 = u̇l

n+1 + ∆u̇l
n+1 (56)

ul+1
n+1 = ul

n+1 + γ∆t∆u̇l
n+1 (57)

pl+1
n+1 = pl

n+1 + ∆pl
n+1 (58)

φ̇l+1
n+1 = φ̇l

n+1 + ∆φ̇l
n+1 (59)

φl+1
n+1 = φl

n+1 + γ∆t∆φ̇l
n+1 (60)

5.2. Fully-coupled linear solver

The multi-corrector stage requires the solution of a large linear system given by Eq. (55), which couples the
different components of the free-surface flow formulation. To increase the robustness of the formulation, Eq. (55)
is solved by a direct coupling approach [72] based on GMRES solver [73], in which the Jacobian matrix is fully
constructed with all terms in RBVMS represented, namely,

J =

⎡⎢⎢⎢⎣
∂ RM
∂u̇n+1

∂ RM
∂pn+1

∂ RM
∂φ̇n+1

∂ RC
∂u̇n+1

∂ RC
∂pn+1

∂ RC
∂φ̇n+1

∂ RL
∂u̇n+1

∂ RL
∂pn+1

∂ RL
∂φ̇n+1

⎤⎥⎥⎥⎦ (61)
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Fig. 5. Simulation domain of the solitary wave case.

The condition number of the above matrix is typically very large due to the complexity of the free-surface flow
problems. To improve the efficiency and robustness, the following preconditioning matrix is used, which represents
the inverse of the decoupled Jacobian matrices for individual Navier–Stokes and level set problems, namely,

M =

⎡⎢⎢⎣
∂ RM
∂u̇n+1

∂ RM
∂pn+1

0
∂ RC

∂u̇n+1

∂ RC
∂pn+1

0

0 0 ∂ RL
∂φ̇n+1

⎤⎥⎥⎦
−1

(62)

The preconditioning problems are solved by diagonally-preconditioned GMRES solver.

Remark. While the level set convection is solved within the Newton iterations, the re-distancing and mass balancing
of level set field processes are performed after the predictor multi-corrector stage for each time step. This is done
from the consideration of computational cost.

6. Numerical examples

In this section, the proposed formulation is applied to three marine engineering problems. The first problem
is a solitary wave impacting a stationary platform, which is a well-known benchmark problem, widely used for
validating free-surface flow simulations. A refinement study is performed on this problem. The second problem
is the 3D dam break with an obstacle, which involves violent free-surface evolution. Rich experiment data for
pressure is available. The third problem is the free-surface simulation of the planing of a scaled DTMB 5415 ship
model. All the simulations in the present paper make use of linear tetrahedral elements. The simulated results are
compared against experimental results and computational results from other researchers in the literature to validate
the accuracy of the proposed formulation.

6.1. Solitary wave impacting a stationary platform

The computational setup of this problem is defined as follows. As shown in Fig. 5, the simulation domain is a
rectangular box with dimensions 10 m × 1 m × 1 m. The platform with dimensions 1.524 m × 0.4 m × 0.3 m
is located inside the simulation domain, with its front face 5 m away from the inlet of the simulation domain. A
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Table 1
Element lengths of the meshes in the solitary wave case.

Near platform Near outer boundary

Immersed coarse mesh 0.028 m 0.15 m
Immersed medium mesh 0.020 m 0.15 m
Immersed fine mesh 0.014 m 0.15 m
Boundary-fitted mesh 0.014 m 0.15 m

Table 2
Number of elements and nodes of the meshes in the solitary wave case.

Number of elements Number of nodes

Immersed coarse mesh 1,839,451 302,061
Immersed medium mesh 3,842,305 627,472
Immersed fine mesh 8,614,067 1,400,329
Boundary-fitted mesh 8,080,835 1,318,197

second-order solitary wave profile based on potential flow theory is initialized in the simulation domain. The initial
level set function, velocity vectors are defined as

φ =d
[
ζ sech(q)2

−
3
4
ζ 2sech(q)2

]
(63)

u =
√

gd
{
ζ sech(q)2

+ ζ 2sech(q)2

×

[
1
4

− sech(q)2
−

3
4

(
s
d

)2(2 − 3sech(q)2)2
]}

(64)

v =0 (65)

w =
√

gdζ
√

3ζ (
s
d

)sech(q)2 tanh(q)

×

{
1 − ζ

[
3
8

+ 2sech(q)2
+

1
2

(
s
d

)2(1 − 3sech(q)2)
]}

(66)

where (u, v, w) are the velocity components in stream-wise, span-wise and vertical directions, g is magnitude of
gravitational acceleration, d is still water depth, H is the wave height, ζ is the ratio between wave height and still
water depth ζ =

H
d , c =

√
gd(1 +

1
2ζ −

3
20ζ 2) is the wave speed, q =

√
3ζ

2d (1 −
5
8ζ )(x − ct), s = z + d , z is the

distance from still water surface. The air–water interface (far from the peak) in the hydrostatic configuration locates
at z = 0. The parameters in this simulation case are chosen as followed: d = 0.234696 m, ζ = 0.42, and zero
clearance (the distance between the bottom surface of the platform and the still water level) are used. The distance
between the wave peak and the front surface of the platform is 2 m.

The boundary conditions are defined as follows. Strong no-penetration boundary condition is used for inlet, outlet,
side, and bottom boundaries of the simulation domain. Traction-free boundary condition is used for the top surface.
Finally, weakly enforced no-slip boundary condition, based on Eq. (37), is used for the fluid-platform interface.
The time step is 0.0005 s in the following simulations. To capture the free-surface evolution and hydrodynamic
load better, the region around the air–water interface and the platform is refined. A refinement study of the
immersogeometric approach is performed using three meshes. A boundary-fitted simulation using the element
lengths based on the fine mesh is also performed. The total number of nodes, elements, and element lengths of
the four meshes are summarized in Tables 1 and 2. Fig. 6 shows a snapshot of the boundary-fitted mesh and the
immersed fine mesh in the central plane (y = 0).

Fig. 7 shows the instantaneous free-surface shape colored by velocity magnitude. Both the velocity magnitude
and free-surface shape look very natural. The simulation is also able to capture the flow separations near the sharp
edge of the platform. Fig. 8 shows the normalized pressure at the two points. The origin of coordinate system is the
geometric center of inlet. The coordinate of P1 and P2 are (5.9245 m, 0.0 m, −0.265304 m) and (6.4974 m, 0.0
m, −0.265304 m), respectively. Please note that t = 0 is the time when the wave crest arrives at P1. The location
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Fig. 6. Meshes of the solitary wave case.

Fig. 7. Free-surface deformation colored by velocity magnitude (m/s).

of the two points can be found in Fig. 5. To validate the proposed formulation, the experimental measurements
obtained by [74] are also plotted in Fig. 5. All the meshes generate quite accurate results. However, results with
coarse mesh over-predict the pressure. One possible reason is that the thickness of air–water interface scales with
local mesh size in the formulation. As a result, integrating along the depth direction, the coarse mesh with bigger
interface thickness by nature gives higher pure hydrostatic pressure. The refinement study shows that the simulation
results of the immersed method gradually converge to the results from boundary-fitted mesh as we refine the mesh.

6.2. Dam break with an obstacle

The dam break case investigates how a column of water, initially at rest, collapses due to gravity and impacts
a stationary obstacle. The simulation domain is a rectangular box with dimensions 3.22 m × 1.0 m × 1.0 m.
The water column with dimensions 1.22 m × 1.0 m × 0.5 m initially locates on the left of the domain, with a
distance of 2.3955 m from the center of a stationary obstacle with dimensions 0.403 m × 0.161 m × 0.161 m.
The computational setup of this problem is shown in Fig. 9. The region around the obstacle is refined to capture
the pressure. The element length of the mesh, and the number of nodes and elements are given in Tables 3 and 4.
Fig. 10 shows the mesh in the central plane, Fig. 11 shows a zoom-in view of the mesh. The initial and boundary
conditions are set as follows. For initialization, zero velocity is used, and the level set function is defined based on
the signed distance with respect to the initial free-surface of the water column. No-penetration boundary condition
is set strongly for all the boundaries of the simulation domain, while no-penetration boundary condition is applied
weakly, based on Eq. (38), for the fluid–obstacle interface. ∆t = 0.0005 s is used for this case. Simulation is
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Fig. 8. Time history of normalized pressure (γ = ρg).

Fig. 9. Computational setup of dam break with obstacle.

performed until t = 6.0 s. Fig. 12 shows the free-surface at t = 0.50 s, t = 1.25 s, t = 1.75 s, and t = 4.75 s.
When the water hits the obstacle, the free-surface evolution is more violent compared with the previous solitary
wave case. After impacting the outlet wall of the tank, the water runs up the back wall quickly and even touches
the top of the tank. At the later stages of the simulation, wave breaking occurs. These free-surface features are also
observed in the experiments reported in [75].

We report the time history of the pressure at four points on the obstacle in Fig. 13. The location of the four
points is shown in Fig. 9. Experiments data from Maritime Research Institute Netherlands (MARIN) [75] and
computational results based on a boundary-fitted approach [40] are also plotted to validate the simulated results
in the present work. The coordinate of P1, P2, P3 and P4 are (2.315 m, 0.0255 m, 0.021 m), (2.315 m, 0.0255
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Table 3
Element length of the mesh in the dam break case.

Near obstacle box Near outer boundary

0.0045 m 0.03 m

Table 4
Number of elements and nodes of the mesh in the dam

break case.

Number of elements Number of nodes

1,461,086 241,252

Fig. 10. Mesh of the dam break case in central plane.

Fig. 11. Zoom in of mesh (dam break case) in central plane.

m, 0.101 m), (2.375 m, −0.0255 m, 0.161 m) and (2.455 m, −0.0255 m, 0.161 m), respectively. For P1 and
P2, excellent agreement is achieved. Although the computational results of both boundary-fitted approach and
present immersed approach deviate from the experiment measurement for P3 and P4, this comparison shows that
the immersogeometric approach can at least produce the same level of accuracy as boundary-fitted approach for
this problem.
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Fig. 12. Free-surface deformation of the dam break simulation (t = 0.50 s, 1.25 s, 1.75 s, and 4.75 s, from the top to the bottom).
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Fig. 13. Pressure time history of the dam break case.

6.3. Planing of a DTMB 5415 ship model

In this section, the planing of the David Taylor Model Basin (DTMB) 5415 ship model is simulated by using
the proposed immersed formulation.

Fig. 14 shows the CAD model of the DTMB 5415 bare ship. For the geometry details, the readers are referred
to [76]. The length of the model L is 5.72 m. The draft T is 0.248 m. The Froude number Fr is 0.28.

Fig. 15 shows the computational setup. The simulation domain is a box with dimensions 3L × L × L . Fig. 16
shows the mesh in the central plane, Fig. 17 shows a zoom-in view of the mesh. The origin of the coordinate
system locates at the intersection of the bow with the still free surface. The mesh is refined around the air–water
interface and the ship. The element length employed in the mesh, the number of elements and nodes are summarized
in Tables 5 and 6. The boundary conditions are defined as follows. Uniform water speed and zero air speed are
applied strongly for inflow, hydrostatic pressure condition is used for outflow, free-slip and no-penetration condition
is applied strongly for side boundaries, and no-slip boundary condition is applied weakly for the fluid–ship interface.
The time step ∆t is set to 0.003 s for this case. The simulation is performed until no noticeable free-surface change
is observed (quasi-static stage).

Fig. 18 shows the free-surface colored by the water elevation from two view angles. The wave profile looks
symmetric with respect to the centerline at the scale of the figure. Fig. 19 shows the wave heights normalized by
L along the center line and along the line of y/L = 0.172, respectively. The experimental data from [77] is plotted
for comparison. A close agreement is achieved again that indicates the accuracy of the proposed formulation. The
small discrepancy between simulation results and experiment results could be explained as follows. The experiment
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Fig. 14. Geometry of DTMB 5415 ship hull.

Fig. 15. Computational setup of the DTMB 5415 ship case.

Fig. 16. Mesh of the DTMB 5415 ship case in the central plane.



20 Q. Zhu, F. Xu, S. Xu et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112748

Fig. 17. Zoom in of mesh (DTMB 5415 ship case) in the central plane.

Fig. 18. Free-surface colored by wave height (m) at the quasi-static stage from two different view angles.
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Table 5
Element length employed in the mesh of the DTMB 5415 ship case.

Ship and free-surface Top boundary Bottom boundary

Mesh size 0.012 m 0.174 m 0.350 m

Table 6
Number of elements and nodes of the mesh of the
DTMB 5415 ship case.

Number of elements Number of nodes

15,272,253 2,788,077

Fig. 19. Wave height comparison of the DTMB 5415 ship hull case.

is conducted in a wide wave tank. To save the computational cost, we adopt a truncated simulation domain with
no penetration boundary condition, which may have a slight side wall effect. The mesh resolution near the ship
boundary may not be fine enough to capture all the details.

7. Summary and future work

We developed an immersogeometric formulation for free-surface flow simulations around complex geometry by
integrating level set method, residual-based variational multi-scale formulation, and finite cell method. The Dirichlet
boundary condition on the fluid–structure interface is enforced by a weak formulation. The FCM-based adaptive
quadrature is employed to better resolve the immersed structure boundary. The octree-based ray-tracing method
is used to perform the in-out test for complex geometry. The accuracy of the proposed formulation is assessed
by simulating three challenging marine engineering problems. Computational results agree well with experimental
data and computational results from boundary-fitted methods. Together with its high accuracy, the flexibility of the
method facilitates high-quality analysis of marine structures with complicated geometry in free-surface flows by
circumventing labor-intensive volumetric meshing step. In the future, we plan to include adaptive mesh refinement
around free-surface and cavitation model in this immersogeometric formulation.
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