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Abstract

Thermal multi-phase flow analysis has been proven to be an indispensable tool in metal additive manufacturing (AM)
odeling, yet accurate and efficient simulations of metal AM processes remains challenging. This paper presents a flexible

nd effective thermal multi-phase flow model for directed energy deposition (DED) processes. Departing from the data-fitted
r presumed deposit shapes in the literature, we first derive a deposit geometry model based on an energy minimization
roblem with a mass conservation constraint. Then, an interface-capturing approach based on a signed distance function that
oves with the laser is constructed to represent the air–metal interface evolution. The approach can be applied to any type

f mesh without requiring the activation process of solid elements in a mesh. The coupled multi-phase Navier–Stokes and
nergy conservation equations are solved by a variational multi-scale formulation (VMS). A density-scaled continuous surface
orce (CSF) model is employed to incorporate the Marangoni effect, no penetration boundary condition, and the heat source
n the air–metal interface. We utilize the proposed method to simulate two representative metal manufacturing problems. The
imulated results are carefully compared with available experimental measurements and computational results from others. The
esults demonstrate the accuracy and modeling capabilities of the proposed method for metal AM problems.
c 2020 Elsevier B.V. All rights reserved.

eywords: Directed energy deposition; Additive manufacturing; Thermal multi-phase flow; Variational multi-scale formulation

1. Introduction

Metal additive manufacturing (AM), such as laser powder bed fusion (LPBF) and directed energy deposition
DED), has the potential to revolutionize mechanical, aerospace, and biomedical industries owing to the superior
apability to print metals with complex geometries directly from digital models without the constraints of traditional
anufacturing technologies [1]. Developing predictive models to link the process–structure–property is one of the

undamental research areas in metal AM. However, metal AM, due to the intrinsic multi-scale and multi-physics
ature, is challenging to model. For the past decade, many researchers have proposed various methods to model
etal AM at different scales.
Among the essential models is the process modeling technique, which acts as a spearhead to elucidate the

riving physics of manufacturing processes and their dependence on process parameters. The state-of-the-art metal
M process modeling techniques employ thermal fluid models by solving Navier–Stokes equations coupled with
eat transfer at the powder scale to capture the evolution of temperature, melt pool dynamics, phase transition,
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and interface topological changes. Lawrence Livermore National Lab developed a thermal-fluid solver using the
Arbitrary-Lagrangian Eulerian technique [2–5]. Lin et al. [6,7] developed a control-volume finite element approach
to simulate a single particle deposition during DED processes. Yan et al. utilized the volume-of-fluid (VoF) based
thermal-fluid solver to model multi-layer and multi-track LPBF processes [8–12]. Panwisawas et al. also employed
the VoF method by using OpenFOAM to analyze the inter-layer and inter-track void formation [13]. Li et al.
developed a thermal-fluid model by combining the level set method and Lagrangian particle tracking to investigate
powder–gas interaction in LPBF processes [14].

Despite the fine resolved details, the computational cost of these powder-scale approaches is prohibitively high
ue to the small size and the large number of powders during metal AM processes. An alternative approach to
educe the computational cost is to treat powders as continuous domain and not discrete ones. For directed energy
eposition simulations, this type of approach’s success largely depends on deposit geometry models. A recent paper
y Wang et al. [15] performed a thorough analysis of deposit geometry using power-scale multi-physics modeling
nd gaussian process regression analysis. However, in the context of continuous domain based analysis, previous
odels typically utilize experimental data-fitted shapes or presumed 2D or 3D geometry shapes, such as parabolic,

inusoidal or elliptical surfaces [16–20]. These approaches are easy to use but lack a solid physical foundation.
esides, the materials deposit process of these approaches is achieved by activating the mesh elements as solids as

he laser scans, which restricts the types of elements allowed in the simulations [21].
Departing from these approaches, we put forth an effective gas–liquid–solid thermal fluid model without

ntroducing any additional equation to simulate DED processes. We first derive a theoretical model for the deposit
eometry based on an energy minimization problem subject to a mass conservation constraint. Then, an interface-
apturing approach based on a signed distance function that moves with the laser is utilized to represent the
ir–metal interface. The Marangoni effect, no penetration boundary condition, and the laser heat are handled
y the density-scaled continuous surface force (CSF) model [22] that is also used in our previous multi-phase
ow work in [7,23–25]. We solve the thermal fluid model by employing the residual-based variational multi-
cale formulation (VMS). VMS, attributed to its geometry flexibility and variational consistency, has been applied
o many challenging computational fluid dynamics (CFD), fluid–structure interaction (FSI), and multi-physics
roblems [26–31], rendering it very attractive to thermal multi-phase flow problems in metal AM processes.

This paper is structured as follows. Section 2 describes the thermal multi-phase flow formulation, including
overning equations, deposit geometry model, interface-capturing approach, and VMS formulation. Section 3
resents the applications to two metal manufacturing problems. The simulated results are carefully compared
ith experimental data or computational results from others to demonstrate the proposed approach’s accuracy and
redictive capability. We summarize the contributions and limitations of the proposed method in Section 4.

. Formulation

The proposed multi-phase flow formulation considers gas, liquid, and solid phases during DED processes. The air
nd metal phases are distinguished by an interface-capturing approach, while the liquid and solid metal phases are
istinguished by a liquid fraction that is a function of temperature. The formulation builds upon the tacit assumption
hat the solid phase is a highly viscous fluid with the same constant density as the liquid metal. The latent heat of
usion is considered, while the loss of metal material due to vaporization and the effects on heat loss, composition
hange, and fluid motion are negligible for the problems considered here.

.1. Governing equations

The gas, liquid, and solid phases in DED processes are modeled by a unified fluid mechanics approach, in which
he material properties are interpolated by the respective properties of individual phases. The velocity u, pressure p,

and temperature T during DED processes satisfy the following incompressible Navier–Stokes equations and energy
conservation equation.

rM (u, p) :=
∂ρu
∂t

+ ∇ · (ρu ⊗ u) + ∇ p − ∇ · (2µ∇
su) − ρg − fs − fp = 0 in Ωt (1)

rC (u) := ∇ · u = 0 in Ωt (2)

rT (u, T ) :=
∂(ρh)

+ ∇ · (ρuh) − ∇ · (κ∇T ) − QT = 0 in Ωt (3)

∂t

2
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Fig. 1. Diagram of a single-track DED process. As the laser moves, the surrounding nozzles simultaneously inject metallic powders into
the laser beam and deposit them onto the substrate.

where Ωt is the problem domain, ρ and µ are the material density and dynamic viscosity, g is the gravitational
acceleration vector, ∇

s is the symmetric part of gradient operator. In Eq. (3), h =
∫ T

T0
cpdτ + L fL is the enthalpy,

here cp is the heat capacity, κ is the heat conductivity, L is the latent heat of fusion, and fL is the liquid fraction
hat takes a linear profile in the mushy zone, namely,

fL (T ) =

⎧⎪⎨⎪⎩
0, T ≤ Ts
T −Ts
Tl−Ts

, Ts < T < Tl

1, Tl ≤ T

(4)

where Ts and Tl are the solidus and liquidus temperature, respectively.
In Eqs. (1)–(3), fs , fp, and QT represent the Marangoni force, non-penetration boundary condition, and heat

laser on the gas–metal interface, respectively. We will present the respective models based on an interface-captured
approach later in the paper.

2.2. Deposit geometry

Deposit geometry is an important factor for DED simulations. Previous models either rely on experimental
observations or presumed 2D/3D geometry shapes, such as parabolic, sinusoidal or elliptical surfaces [16–20]. These
models are simple to implement but lack a sound physical foundation. Departing from these models, we propose
a new theoretical approach to derive the deposit geometry based on an energy minimization problem with mass
conservation constraint. Fig. 1 shows the schematic diagram of a typical single-track DED process. The proposed
approach makes two assumptions: (1) The cross-section of the deposit remains unchanged behind the laser. (2) The
material distribution is radially symmetric under the laser beam. To derive the deposit shape, we first define the
following energy function in the deposit volume.

E =

∫
Γt

σdΓ +

∫
Ωded

t

ρm gzdΩ (5)

where Ωded
t is the volume occupied by the material deposit, Γt is the surface of Ωded

t exposed to the air. In Eq. (5),
the first term represents the surface energy, where σ is the surface tension coefficient. The second term is the
gravitational potential energy, where ρm is the metal density, g is the gravitational acceleration magnitude, z is the
height with respect to the substrate. The deposit geometry Γ can be described as a height function ψ(x, y) with
t

3
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respect to the substrate (x-y plane), namely,

Γt = {x = (x, y, z)T
|z = ψ(x, y), x ∈ R3

} (6)

Then, the total energy function in Eq. (5) can be expressed as

E(ψ) =

∫
Γ

p
t

(σ
√

1 + ψ,2x +ψ,2y +
1
2
ρm gψ2)dxdy (7)

where Γ
p
t is the projection of Γt on the substrate. ψ(x, y) can be obtained by minimizing the energy function E(ψ)

subject to appropriate constraints. Considering the caught mass from the nozzle must equal the mass in the deposit
volume, the following constraint needs to be satisfied, ρm Vs A = ηcṁ, where A is the area of the cross-section
behind heat laser, ηc is the fractional mass catchment of material into the melt pool, ṁ is the mass flow rate from
the nozzle, Vs is the scanning speed of the laser. Considering the facts that the deposit cross-section behind the
laser remains unchanged and the deposit length is much longer than its width, it is reasonable to assume ψ,x = 0
in Eq. (7), which reduces the 3D minimization problem to the following 2D minimization problem

ψ̃ = argmin
ψ̃

Ẽ(ψ̃) =

∫ L
2

−
L
2

(σ
√

1 + ψ̃,2y +
1
2
ρm gψ̃2)dy (8)

subject to ρm Vs

∫ L
2

−
L
2

ψ̃dy = ηcṁ

where ψ̃ = ψ̃(y) is the height function of the deposit cross-section behind the laser (see Fig. 1), L is the deposit
width, which is a fraction fm of the laser beam radius rb. fm varies from 0.75 and 1, depending on the manufacturing
parameters [20].

The minimization problem in Eq. (8) can be solved by using a Lagrangian multiplier approach, in which the
following Lagrangian functional is defined

F(ψ̃) = Ẽ(ψ̃) + λ

(
ρm Vs

∫ L
2

−
L
2

ψ̃dy − ηcṁ

)
(9)

here λ is an unknown Lagrangian multiplier. The stationary point is obtained by setting δF
δψ̃

= 0 and δF
δλ

= 0,
hich leads to the following two Euler–Lagrange equations with boundary conditions.

ψ̃,yy =

ρgψ̃+λ

σ

√
1 + ψ̃,2y + ψ̃,2y

1 + ψ̃,2y
(10)

∫ L
2

−
L
2

ψ̃dy =
ηcṁ
ρm Vs

(11)

ψ̃(±
L
2

) = 0 (12)

his is a highly nonlinear ordinary differential equation (ODE) and has to be solved numerically. The good news
s that we only need to solve it once. Once ψ̃ is given, the deposit geometry Γt is constructed as follows. The
eposit behind the laser is obtained by extruding ψ̃ along x direction, and the deposit front is obtained by rotating
˜ around the laser. With Γt , a signed distance function that moves with the laser at the same speed is constructed
o represent the air–metal interface. The approach and the associated methods of enforcement boundary conditions
n the air–metal interface will be given next.

.3. Interfacial method

We make use of an interface-capturing method to handle the gas–metal interface. To this end, a signed distance

unction φ(t, x) is defined in Ωt. φ = 0 on the air–metal interface and takes a signed distance with respect to the

4
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deposit geometry Γt in air and metal phases, given as follows

φ(t, x) =

⎧⎪⎨⎪⎩
dist(x,Γt ) if x ∈ Ωm

0 if x ∈ Γt

−dist(x,Γt ) if x ∈ Ωa

(13)

φ(t, x) can be obtained by solving the following Eikonal equation

∥∇φ∥ = 1 in Ωt (14)

φ = 0 on Γt (15)

With the signed distance function φ, any material χ needed in the thermal fluid equations can be evaluated by the
following interpolation.

χ (φ, t) = χa [1 − Hϵ(φ)] + [χl fL + χs(1 − fL )] Hϵ(φ) (16)

where χa , χl , and χs are the corresponding material property in air, liquid, and solid phases. Hϵ is a regularized
Heaviside function, given as

Hϵ(φ) =

⎧⎪⎨⎪⎩
0 if φ ≤ −ϵ
1
2 (1 +

φ

ϵ
+

1
π

sin(πφ
ϵ

)) if |φ| < ϵ

1 if φ ≥ ϵ

(17)

where ϵ is a small, positive constant and scales with local element size, which defines the air–metal interface
thickness.

Continuous surface force (CSF) model [22] is used to incorporate the boundary conditions of the Marangoni effect
and no penetration boundary condition on the air–metal interface in the Navier–Stokes equations, and heat flux in
the energy conservation equation. The basic concept of the CSF model is converting traction/flux type boundary
conditions into volumetric forcing terms via a regularized Dirac-δ function δϵ that is only non-zero around the
gas–metal interface. In present formulation, fs , fp, and QT are defined as

fs =
∂σ

∂T
[∇T − (∇T · n)n] δϵ (18)

fp = −λp(u · n)nδϵ (19)

QT =
dηp Q
πr2

b
exp(−d

|x − xc|
2

r2
b

)(n · e3)δϵ (20)

here n is the unit normal vector of gas–metal interface, e3 = (0, 0, 1)T , ∂σ
∂T is the Marangoni coefficient, λp is a

enalty coefficient for no penetration boundary condition, Q is the laser power, d is the laser distribution factor,
p is the absorptivity, rb is the laser radius, xc is the laser center that moves with scanning speed Vs . Normally, δϵ

can calculated as δϵ =
∂Hϵ
∂φ

. Following our previous work in [7,23], the density-scaled Dirac-δ function is utilized,
amely,

δϵ(φ) =
2ρ(φ)
ρa + ρs

∂Hϵ

∂φ
(21)

2.4. Variational multi-scale formulation

A residual-based variational multi-scale approach (VMS) [32,33] is employed to solve the above thermal multi-
phase flow model for DED processes. For completeness, the semi-discrete formulation is briefly presented as follows.
Let Vh denote the trial function space for unknown velocity uh , pressure ph , and temperature T h , respectively. Let
Wh denote the space of test functions {wh, qh, ηh

} for the momentum, continuity, and energy conservation equations,
respectively. The VMS formulation of the thermal multi-phase flow model is stated as: ∀{wh, qh, ηh

} ∈ Wh , find
{uh, ph, φh

} ∈ Vh , such that
5
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∫
Ωt

wh
·

[
∂ρuh

∂t
+ ∇ · (ρuh

⊗ uh) − ρg − fs − fp

]
dΩ −

∫
Ωt

ph
∇ · whdΩ

−

∫
ΓF

wh
· hdΓ +

∫
Ωt

∇wh
: 2µ∇

suhdΩ +

∫
Ωt

qh
∇ · uhdΩ

+

∫
Ωt

ηh
[
∂(ρhh)
∂t

+ ∇ · (ρuhhh)
]

dΩ +

∫
Ωt

∇ηh
· κ∇T hdΩ −

∫
ΓT

ηhqdΓ −

∫
Ωt

ηh QT dΩ

+ Σ
nel
e=1

∫
Ωe

t

τM (uh
· ∇wh

+
∇qh

ρ
) · rM (uh, ph)dΩ

+ Σ
nel
e=1

∫
Ωe

t

ρτC∇ · whrC (uh)dΩ − Σ
nel
e=1

∫
Ωe

t

τM wh
· [rM (uh, ph) · ∇uh]dΩ

− Σ
nel
e=1

∫
Ωe

t

∇wh

ρ
: τM rM (uh, ph) ⊗ τM rM (uh, ph)dΩ

+ Σ
nel
e=1

∫
Ωe

t

τT uh
· ∇ηh rT (uh, T h)dΩ = 0 (22)

here the superscript h represents the scales of quantities resolved on the mesh used. The computational domain
s decomposed into nel elements, namely, Ωt =

⋃
e Ω

e
t . rM , rC , and rT represent the residuals of strong form

overning equations in Eqs. (1)–(3).
∫
ΓF

wh
· hdΓ and

∫
ΓT
ηhqdΓ are used for incorporating the traction h and

heat flux q that are not applied on the gas–metal interface. Eq. (22) features an extension of the residual-based
VMS of single-phase turbulent flows, first introduced in [33], to thermal multi-phase flows. The first two lines and
the third line in Eq. (22) are the Galerkin formulation of the Navier–Stokes equations and energy conservation
equation, respectively. The rest terms in Eq. (22) can be interpreted as a stabilized method or large eddy simulation
(LES) turbulence model [27,33–42] for multi-phase fluid dynamics. τM , τT , and τC are the streamline upwind

etrov–Galerkin (SUPG) [34] and pressure-stabilizing Petrov–Galerkin (PSPG) [35] stabilization parameters, which
re defined as below

τM =

[
4

∆t2 + uh
· Guh

+ C I (
µ

ρ
)2G : G

]−
1
2

τC =
1

tr (G)τM

τT =

[
4

∆t2 + uh
· Guh

+ C I (
κ

ρcp
)2G : G

]−
1
2

where ∆t is the time-step size, C I is a positive constant [43], G is the element metric tensor calculated by the
apping from the iso-parametric element to its physical counterpart, and tr G is the trace of G. G is defined as

G i j =
∂ξk
∂xi

∂ξk
∂x j

(Einstein summation notation is used), where ξ are the parametric coordinates.
The above formulation is temporally integrated by a generalized-α scheme [44]. Newton method is used to

linearize the nodal nonlinear equations. The resulting linear systems are solved by using a generalized minimal
residual method (GMRES) [45] with block preconditioning [23]. It should be noted that this is not the first
application of VMS or stabilized methods to thermal fluid flow simulations. Several successful previous applications
without phase transition can be found in [46–49]. The code is parallelized by using Message Passing Interface (MPI).
All the simulations presented next are executed in Frontera at Texas Advanced Computing Center.

3. Numerical examples

3.1. Laser spot weld pool flows

We first use the proposed formulation to simulate a laser welding process without material deposition. Fig. 3
(left) shows the problem setup. A bulk of metal based on steel (Fe–S system), with sulfur as the active element, is

melted by a stationary heat laser applied on the top surface. The material properties are listed in Table 1. The heat

6
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Table 1
Material properties.

Name Notation (units) Value

Gas density ρa (kg m−3) 0.864
Gas heat capacity cp,a (J kg−1 K−1) 680
Gas thermal conductivity ka (W m−1 K−1) 0.028
Metal density ρl , ρs (kg m−3) 8100
Viscosity of liquid metal µl (Pa s) 0.006
Liquid heat capacity cp,l (J kg−1 K−1) 723.14
Liquid thermal conductivity kl (W m−1 K−1) 22.9
Solid heat capacity cp,s (J kg−1 K−1) 627.0
Solid thermal conductivity ks (W m−1 K−1) 22.9
Liquidus temperature Tl (K) 1630
Solidus temperature Ts (K) 1610
Latent heat of fusion L (J kg−1) 2.508 × 105

Fig. 2. Marangoni coefficient ∂σ
∂T as a function of temperature T for two sulfur activities (ai = 20 ppm and ai = 150 ppm).

laser qin takes the following form

qin =

{
ηQ
πr2

b
r ≤ rb

0 r > rb

(23)

here η = 0.13 is the absorptivity, Q = 5200 W is the laser power, rb = 1.4 mm is the laser radius. The melt
ool shape and melt pool fluid dynamics largely depend on the Marangoni coefficient ∂σ

∂T . According to the model
n [50], ∂σ

∂T is a function of temperature and sulfur concentration, defined as

∂σ

∂T
=

dσ
dT

|0 − Rτsln(1 + K ai ) −
K ai

1 + K ai

τs(∆H 0
− ∆H M )
T

(24)

where dσ
dT |0 is the pure metal Marangoni coefficient, τs is the surface excess at saturation, R is the gas constant.

K = ki exp(−∆H0

RT ) is the equilibrium constant for segregation, where ki is the entropy factor, ∆H 0 is the standard
heat of absorption, ∆H M is the partial molar enthalpy of species mixing in the solution. ai is the sulfur weight
percentage. The values of these parameters are summarized in Table 2. In this paper, two sulfur activities ai =

0.002%–wt (20 ppm) and ai = 0.015%–wt (150 ppm) are investigated. The corresponding ∂σ
∂T as a function of

emperature is plotted in Fig. 2.
We simulate the problem with linear tetrahedral elements. As shown in Fig. 3 (right), the computational domain

s a cylinder with a radius of 7 mm and a height of 20 mm. The metal occupies the bottom half of the domain. A
efined cylinder with a radius of 3 mm and a height of 12 mm is placed in the domain center to better capture the

emperature and fluid dynamics. The mesh size gradually grows from the refined region to the outer boundaries

7
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Fig. 3. Diagram of laser spot weld pool flow. Left: Problem setup. Right: Mesh.

Table 2
Parameters of Maragoni coefficient.

Name Notation (units) Value

Pure metal Marangoni coefficient dσ
dT |0 (N m−1 K−1) −5 × 10−4

Saturation surface excess τs (kmole m−2) 1.3 × 10−8

Entropy factor ki (−) 3.18 × 10−3

Standard heat of absorption ∆H0 (J kmole−1) −1.66 × 108

Partial molar enthalpy of species ∆H M (J kmole−1) 0
Sulfur activity ai (%) 0.002, 0.015

from 0.08 mm to 2 mm. The total number of nodes and elements of the mesh are and 351,012 and 1,612,787,
respectively.

Since no material is deposited, a flat air–metal interface is assumed. The Marangoni effect, no penetration
oundary condition, and heat source are applied on the air–metal interface by using the CSF models specified
n Eq. (18)- (20). No heat flux and no-slip boundary conditions are applied on the three surfaces of the cylindrical
omain. The simulations were run with 192 processors with ∆t = 1 × 10−3 s. This problem was investigated
xperimentally in [51] and computationally in [23] using a liquid–solid model. The results are used for comparison
ext.

Figs. 4 and 5 show the temperature contour, melt pool shape, and fluid velocity vectors scaled by their magnitude
or the cases with two sulfur activities. The velocity vectors are tangential to the air–metal interface, which indicates
hat the no penetration boundary condition is enforced well by the CSF model. As shown in Fig. 2, the Marangoni
oefficient has different signs in the melt pools for ai = 20 ppm and ai = 150 ppm cases, which leads to different

melt pool shape and opposite flow circulations, as depicted in Fig. 4. In the ai = 20 ppm case, the Marangoni
coefficient is mainly positive in the melt pool. The higher surface force in higher temperature drives the flow from the
boundary to the center and digs a narrow and deep melt pool (see Fig. 5 (left)). In contrast, the Marangoni coefficient
in the ai = 150 ppm case is mainly negative in the melt pool. The higher surface force in lower temperature drives
the flow from the center to the boundary and results in a wide and shallow melt pool (see Fig. 5 (right)). Fig. 6
shows the time history of melt pool dimensions. Experimental measurements from [51] and numerical predictions
from [23] are also plotted for comparison. Good agreements are obtained.

3.2. Direct energy deposition of SS-316L

A single-track direct energy deposition (DED) process is simulated to demonstrate the proposed approach’s
predictive capability. The problem is set up as follows. A laser with a Gaussian profile scans across a flat SS-316L
8
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s

Fig. 4. Temperature (unit: K) and velocity (unit: m/s) vectors in melt pool (slice view). The black solid line indicates the melt pool boundary.
Left: 20 ppm. Right: 150 ppm.

Fig. 5. Temperature (unit: K) and velocity (unit: m/s) vectors in melt pool (3D view). The black solid line indicates the melt pool boundary.
Left: 20 ppm. Right: 150 ppm.

substrate with an initial temperature of T0 = 300 K. During the scanning, the nozzle around the laser simultaneously
release SS-316L powders into the laser beam and deposit them onto the substrate. When the particles reach the built
surface, it is assumed that they have been heated up to the local temperature. Thus, the absorbed energy by the
depositing material can be computed as

Qv = ṁ
∫ T

T0

cp(τ )dτ (25)

The remaining laser energy entering the metal through the CSF model is

QT =
d(ηp Q − Qv)

πr2
b

exp(−d
∥x − xc∥

2

r2
b

)(n · e3)δϵ (26)

The properties of SS-316L and manufacturing parameters utilized in the paper are listed in Tables 3 and 4. The
imulations make use of a box with dimensions of 30.0 × 5.0 × 4.2 mm. Structured hexahedral elements are used.

A refined region with element length 0.06 mm is designed along the track to better capture the temperature and
fluid dynamics. The generated mesh consists of 496,571 nodes and 388,960 elements. The simulation is performed

−3
with ∆t = 0.25 × 10 s until the melt pool reaches the quasi-steady state.

9
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Fig. 6. Time history of melt pool dimensions. Experimental results from [51] and numerical predictions from [23] are also plotted for
comparison.

Fig. 7 shows the temperature contour, melt pool shape, and velocity vectors in the gas and the melt pool at t
= 0.25 s, 0.5 s, and 0.75 s. As the laser moves forward, the constant negative Marangoni coefficient (see Table 3)
drives the flow from high temperature to low temperature, leading to a long flow circulation region behind. Fig. 8
shows the built cross-section behind the laser and velocity vectors in the melt pool. The experimental image is
also included for comparison. The theoretical deposit geometry model gives a very similar deposit shape to the
experimental measurement. Besides, the predictive melt pool agrees well with the dilution region measured by the
experiment. Fig. 9 shows the time history of melt pool dimension development. It takes a longer time for the length
than width/depth to become stable. When the melt pool reaches the quasi-steady state (the shape does not change),
the dimensions are measured and listed in Table 5.

Cooling rate is a vital variable in metal AM, which has an unmatched effect on micro-structure evolution [20,52],
such as dendrite growth. Previous research indicated that the mechanical strength of additive manufactured parts is
closely related to cooling rate. Fig. 10 shows the temperature profile at the quasi-steady state along the centerline
of the deposit. In this paper, cooling rate is calculated at the centerline of the deposit by Kv =

Tl−Ts
tv

, where tv is
the time of the cooling process takes from liquidus temperature to solidus temperature. We employ the theoretical
model from [53] to evaluate the effect of cooling rate on mechanical properties. Firstly, the average magnitude of
secondary dendrite arm spacing (SDAS), λ, is computed as

λ = 50(Kv)−0.4 (27)

he unit of λ is µm. Moreover, the average hardness Hν related to yield strength of SS-316L takes the following
orm [21]

Hν = 3σy(0.1)−
1
4 (28)

here σy is the yield strength, which is a also function of average magnitude of SDAS, defined as

σy = σ0 +
K y
√ (29)

λ

10
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Table 3
Material properties of SS-316L.

Name Notation (units) Value

Gas density ρg (kg m−3) 0.864
Liquid density ρl (kg m−3) 7800
Solid density ρs (kg m−3) 7800
Gas heat capacity cp,g (J kg−1 K−1) 680
Liquid heat capacity cp,l (J kg−1 K−1) 769.9
Solid heat capacity cp,s (J kg−1 K−1) 330.9 + 0.563T − 4.015 × 10−4T 2

+9.465 × 10−8T 3

Gas conductivity kg (W m−1 K−1) 0.028
Liquid conductivity kl (W m−1 K−1) 40.95
Solid conductivity ks (W m−1 K−1) 11.82+0.0106T
Liquidus temperature Tl (K) 1733
Solidus temperature Ts (K) 1693
Latent heat of fusion L (kJ kg−1 K) 272
Dynamics viscosity µ (Pa s) 0.007
Surface tension σ (N m−1) 1.5
Marangoni coefficient ∂σ

∂T (N m−1 K−1) −4 × 10−4

Ambient temperature T∞ (K) 300

Table 4
DED parameters.

Name Notation (units) Value

Laser power Q (W) 2500
Laser moving speed Vs (m s−1) 0.0106
Laser radius rb (m) 0.002
distribution factor d (−) 2.0
Powder flow rate ṁ (kg s−1) 0.25 × 10−3

Table 5
Quasi-steady melt pool dimensions.

Length (mm) Width (mm) Depth (mm)

6.80 3.40 1.35

Table 6
Cooling rate Kv , average magnitude of SDAS λ, and average hardness Hν .

Cooling rate (K s−1) SDAS (µm) Hardness (MPa)

Present 937 3.24 2107.5
Simulation [20] 608 3.85 2039.0
Experiment [20] – 3.27 ± 0.65 2014.5 ± 44.5

where σ0 and K y are material-dependent coefficients, whose values are 240 MPa and 279 MPa µm
1
2 for SS-316L,

respectively [54]. Based these models, we list the predicted cooling Kv , average magnitude of SDAS λ, and averaged
hardness Hv in Table 6, which shows good agreement with the experimental and simulation data obtained from [20].

4. Conclusion

In this paper, we propose an effective thermal multi-phase flow framework for metal additive manufacturing
(AM), particularly directed energy deposition (DED) processes. In contrast to the presumed deposit shapes used in
the literature, a new deposit geometry model is developed based on an energy minimization function with a mass
conservation constraint. A moving distance function with respect to the deposit geometry is then constructed to
distinguish the air and metal phases. This interface-capture approach gives the freedom to deploy the thermal fluid
11
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Fig. 7. Velocity vectors (unit: m/s) and temperature (unit: K) contour at t = 0.25 s, 0.5 s, and 0.75 s (from left to right and from top
to bottom). The solid line indicates the melt pool boundary and gas–metal interface. The velocity vectors are plotted in white for the gas
phase and in black for the metal phase.

Fig. 8. Cross-section of the deposit: Temperature contour (unit: K) and velocity vectors (unit: m/s) in the melt pool. Left: Present prediction
(the solid line indicates the boundary of the melt pool). Right: Experimental image from [20] (the dotted yellow lines indicates the edge of
the dilution region).

model to any mesh type without explicitly needing to activate the solid elements in a mesh. We validate the proposed
method on two representative metal manufacturing problems. Good agreement with experimental measurements is
achieved. For the DED processes of SS-316L, the model can accurately predict the melt pool dimensions, fluid

dynamics, and the average magnitude of SDAS and hardness.
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Fig. 9. Time history of melt pool dimensions.

Fig. 10. Temperature profile along the centerline of the deposit at the quasi-steady state.

Some parts of the proposed formulation can be improved. Firstly, due to the complex fluid motion in the melt
pool, the energy function in the minimization problem does not consider the kinetic energy, which may or may
not affect the deposit geometry. Secondly, a large portion of the mesh is pre-refined along the track to capture
the physics. Efficiency can be improved by incorporating adaptive mesh refinement (AMR) methods into the
formulation. AMR is especially attractive for modeling multi-track and multi-layer metal AM processes. These
issues will be addressed in future work.
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