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a b s t r a c t

A moving-domain computational fluid dynamics (CFD) solver is designed by deploying
the Arbitrary Lagrangian Eulerian Variational Multi-scale Formulation (ALE-VMS) en-
hanced with weak enforcement of essential boundary conditions (weak BC) into the
open-source finite element automation software FEniCS. The mathematical formulation
of ALE-VMS, which is working as a Large Eddy Simulation (LES) model for turbulent
flows, and weak BC, which is acting as a wall model, are presented with the imple-
mentation details in FEniCS. To validate the CFD solver, simulations of flow past a
stationary sphere are performed with moving meshes first. Refinement study shows the
results quickly converge to the reference results with fixed grids. Then, the solver is
utilized to simulate a tidal turbine rotor with uniform and turbulent inflow conditions.
Good agreement is achieved between the computational results and experimental
measurements in terms of thrust and power coefficients for the uniform inflow case. The
effect of the inflow turbulence intensity on the tidal turbine performance is quantified.

Published by Elsevier Ltd.

1. Introduction

Tidal energy is one of the most promising renewable energy sources in the United States. In the research and develop-
ent of tidal energy, the computational fluid dynamics (CFD) simulation is a powerful tool to quantify the hydrodynamic

oads and predict the performance of tidal turbine design in turbulent flows. Accurate numerical simulations of tidal
urbines are very challenging due to the complexity of turbine geometry and high Reynolds (Re) number turbulent flows
round it. Although a lot of numerical simulations of tidal turbines can be found in the literature, most of them utilize
umped turbine geometry and reduced order fluid model [1]. The number of high fidelity CFD tools that can enable 3D,
ime-dependent, full scale, and full-geometry resolved numerical simulations is still quite few.

Developing high-fidelity CFD codes for specific applications can be labor-intensive and time-consuming. On the other
and, open-source simulation platforms can minimize the users’ need for implementation and therefore greatly improve
he efficiency of the analysis workflow. Among many open-source CFD packages, OpenFOAM, which makes use of the
inite volume method, is widely used. The applications of OpenFOAM to wind energy, fluidization, biomass pyrolysis,
nd additive manufacturing can be found in [2–7]. However, modification of the OpenFOAM code to generate a specific
pplication code still requires a relatively deep understanding of numerical analysis of the users. In order to develop
moving-domain CFD solver that is easy to be modified and upgraded, in this paper, we deploy Arbitrary Lagrangian
ulerian Variational Multi-scale (ALE-VMS) method enhanced with Weak Enforcement of Essential Boundary Conditions
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in FEniCS, which is an open-source finite element automation software. On the one hand, FEniCS is a convenient open-
source package that is able to automatically transform a variational formulation to a high performance C++ finite element
code [8] in an effective way. FEniCS has many interfaces with many popular numerical analysis packages such as
PETSc [9] and Slepc [10]. It is extremely efficient to implement the finite element code for a partial differential equation
(PDE) as long as the corresponding variational formulation is provided [8]. On the other hand, moving-domain fluid
mechanics formulations, such as ALE-VMS and Space-Time VMS (ST-VMS), are powerful boundary-fitted techniques to
solve engineering problems with moving-domains and moving interfaces [11–19]. In this paper, the solver makes use of
ALE-VMS. ALE-VMS is extended from Residual-based Variational Multi-scale Formulation (RBVMS), which was originally
proposed in [20] to simulate high Re number turbulent flows. Weak enforcement of essential boundary conditions (weak
BC) originally proposed in [21] is aimed to provide a wall model to relax the resolution of boundary layers, which are
impossible to be fully resolved in large spatial engineering CFD calculation. Weak BC is widely used for many CFD and
fluid–structure interaction (FSI) problems, such as wind turbines [22–28]. Instead of strongly setting fluid velocity equal to
the structural velocity, weak BC allows the fluid slightly slip on the fluid–structure interface without losing the accuracy
of fluid load prediction. A comparison of strong BC and weak BC in wind turbine simulations can be found in [29]. It shows
weak BC has superior performance over strong BC with a relatively coarse resolution of the blade boundary layers. Since
their conception, these moving-domain fluid mechanics formulation enhanced weak BC are widely applied to simulate
challenging fundamental flow physics problems [30–37] as well as real-world engineering problems, including renewable
energy [25,26], biomechanics [38–42], vehicle engineering [43,44], gas turbines [45,46], water sport equipment [47,48],
bridge engineering [49], and military applications [50,51,51,52]. Thus, we believe implementing ALE-VMS with weak BC
in FEniCS will not only present an excellent demonstration of the advantages of both the numerical formulation and
FEniCS but also provides a starting point for developing advanced moving-domain CFD code that can be widely used for
fundamental and practical applications.

The paper is structured as follows. In Section 2, the governing equations and the ALE-VMS with weak BC are presented.
The implementation in FEniCS is also described in detail such that the readers can easily duplicate the solver in FEniCS.
In Section 3, two problems are solved by using the proposed solver. First, flow past a stationary sphere at Re = 400
is simulated with rotating meshes. Drag coefficient Cd is compared with DNS result. Refinement study is performed
to validate the proposed solver. Then tidal turbine simulations using uniform and turbulent inflow conditions are
presented. The method of inflow turbulence generation is presented first. The thrust and power coefficients of the uniform
inflow condition are compared with experimental measurements. Good agreement is achieved. The effect of the inflow
turbulence intensity on the coefficients is quantified as well. In Section 4, conclusions are drawn.

2. Numerical formulation

2.1. Governing equations and semi-discrete formulation

The Navier–Stokes equations of incompressible flows on moving-domains with ALE technique are defined as

∂u
∂t

⏐⏐⏐⏐
x̂
+

(
u − û

)
· ∇xu = ∇x ·

(
2ν∇

s
xu − pI

)
+ f (1)

∇x · u = 0 (2)

where u, û, p, and f are the fluid velocity, fluid domain velocity, pressure and body force respectively. ν is the kinematic
viscosity, given by ν = µ/ρ, where µ is the dynamical viscosity, and ρ is the density. ∇

s
x is the symmetric part of the

gradient operator. I is the identity matrix. Note that, in the ALE formulation, the time derivatives are taken with respect
to a referential fluid domain held fixed, while the space derivatives are taken with respect to the current fluid domain.
In ALE, fluid velocity u and fluid domain velocity û are independent, which allows significant flexibility for choosing
appropriate mesh moving schemes.

To solve Eq. (1) and Eq. (2), the Arbitrary Lagrangian Eulerian Variational Multi-scale formulation (ALE-VMS) is adopted.
ALE-VMS is an extension of the Residual-based Variational Multi-scale Formulation (RBVMS) to simulate turbulent flows
on moving-domains. For the completeness, the semi-discrete formulation of ALE-VMS is presented as follows. Let Ωt
denote the moving fluid domain, Γt denote its boundary, Vh denote the discrete trial function space for the velocity
and pressure {uh, ph}, Wh denote the discrete testing function space for the linear momentum, continuity equations, the
operator (X1,X2)A denote the L2-inner product of X1 and X2 over the domain A, taken element-wise. With these notations,
the semi-discrete formulation of ALE-VMS reads:

Find {uh, ph} ∈ Vh s.t. ∀ {vh, qh} ∈ Wh :

BALE−VMS({vh, qh}, {uh, ph}) = FALE−VMS({vh, qh})
(3)

where FALE−VMS({vh, qh}) is given as

FALE−VMS({v , q }) = (v , f) + (v ,h) (4)
h h h Ωt h Γ h
t
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where h is the applied traction on the natural boundary Γ h
t . In Eq. (3), BALE−VMS({vh, qh}, {uh, ph}) = BG({vh, qh}, {uh, ph})+

Fine({vh, qh}, {uh, ph}), where BG and BFine are the standard Galerkin formulation and the fine-scale terms derived from
LE-VMS approach, which are given as

BG({vh, qh}, {uh, ph}) = (vh,
∂uh

∂t

⏐⏐⏐⏐
x̂
+ (uh − ûh) · ∇xuh)Ωt + (∇s

xvh, 2ν∇
s
xuh − phI)Ωt

+ (qh, ∇x · uh)Ωt

(5)

nd

BFine({vh, qh}, {uh, ph}) =
(
(uh − ûh) · ∇xuh, τMrM (uh, ph)

)
Ωt

+ (∇x · vh, τC rC (uh))Ωt

+ (∇xqh, τMrM (uh, ph))Ωt − (vh · (∇xuh)T , τMrM (uh, ph))Ωt

− (∇xvh, τMrM (uh, ph) ⊗ τMrM (uh, ph))Ωt

(6)

here rM (uh, ph) and rC (uh) are the residuals of strong form momentum and continuity equations, given as

rM (uh, ph) =
∂uh

∂t

⏐⏐⏐⏐
x̂
+ (uh − ûh) · ∇xuh − f − ∇x · (2ν∇

s
xuh − phI)

rC (uh) = ∇x · uh

(7)

M and τC are the corresponding stabilization parameters, defined as

τM =

(
4

∆t2
+

4∥uh∥
2

h2 +
16ν2

h4

)−1/2

τC =
h2

12τM

(8)

where h is the characteristic element length, h is set to minimum edge length of tetrahedron element in this paper.
The stabilization parameters utilized in this paper are based on the Streamline-Upwind/Petrov–Galerkin (SUPG) [53] and
Pressure Stabilization Petrov–Galerkin (PSPG) [54]. Other possible definitions and more discussions on the stabilization
parameters can be found in [53–57].

Fully resolving of viscous turbulent boundary layers of large spatial scale CFD simulations with high Re number
turbulent flows is extremely computationally expensive. To relax the resolution requirement of boundary layers without
sacrificing the accuracy of fluid loading prediction, the ALE-VMS formulation is upgraded with the weak enforcement of
essential boundary conditions (weak BC), which was originally developed in [21] and has been successfully applied to
wind turbine simulations [22–27]. For that, the following terms acting on the essential boundary Γ S

t are added to the
left-hand side of Eq. (3).

− (vh, 2ν∇
s
x(uh) · n − phn)Γ S

t
− (2ν∇

s
x(vh) · n + qhn,uh − g)Γ S

t
(9)

− (vh · (uh − ûh) · n,uh − g)
Γ

S−
t

+ (τtan(vh − (vh · n)n), (uh − g) − ((uh − g) · n)n)Γ S
t

+ (τnorvh · n, (uh − g) · n)Γ S
t

here g is the prescribed velocity, the inflow part is defined as Γ S−
t = {x | (uh − ûh) ·n < 0 , ∀x ⊂ Γ S

t }, τtan and τnor are
mall penalty parameters chosen for the balance of accuracy and numerical stability, which, in general, can be different for
he tangential and normal directions. In this paper, the no-slip boundary condition is used on the fluid–structure interface,
nd the same penalty parameter is adopted, namely,

τtan = τnor =
4ν
h

(10)

Other key numerical details are summarized as follows. Generalized-α is adopted for time integration. A two-stage
predictor–multicorrector algorithm based on Newton’s method is used to solve the nonlinear equations. The resulting
linear systems are solved by the linear solver in PETSc [9] embedded in FEniCS, which will be briefly described below. All
the simulations make use of linear elements and are performed in a parallel setting by using the Bluewater supercomputer
at the University of Illinois at Urbana–Champaign.

2.2. FEniCS implementation

FEniCS is an open-source finite element simulation platform to address this issue. The idea of FEniCS is to enable
automated solutions of partial differential equations (PDEs) based on their variational formulations. In FEniCS, the special
purpose code can be generated automatically from a high-level description of the differential operator by combining
reusable components of finite element algorithms, such as assembling and linear solvers, with automated code generation
for the computation of the discrete operators [8]. These concepts are illustrated in Fig. 1.
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Fig. 1. Concept of FEniCS.

Fig. 2. Trial and testing function space.

Fig. 3. Variable definitions.

FEniCS is composed of many core components that include UFL (Unified Form Language) [58], FIAT (Finite element
utomatic Tabulator), FFC (FEniCS Form Compiler) [59], UFC (Unified Form-assembly Code) [60], Instant [61] and
OLFIN [62]. UFL is a special language for implementing the variational formulation. FFC is a compiler that transforms
he UFL language into the corresponding C++ interface code (UFC). Finite element basis functions and the corresponding
uadrature rules are defined in FIAT. The data structures, assembly routine, linear solvers are defined in DOLFIN. To provide
ome details of the CFD solver, the definitions of basis function spaces, variables, residuals of strong form equations,
tabilization parameters, and variational formulation of ALE-VMS based on UFL in the FEniCS code are given step by step
n the following.

Fig. 2 shows the definition of the trial and testing function space utilized in the FEniCS code. ALE-VMS allows using
qual-order basis functions for both velocity and pressure fields. Thus, tetrahedron elements are used here for both
ressure and velocity fields, although it is easy to change to high order basis functions in FEniCS.
Fig. 3 shows the variable definitions. du1 and p1 are the acceleration and pressure on n + 1 step, which need to be

olved. du0 and u0 are the acceleration and velocity on n step, which are knowns. ur is the mesh velocity, fx is external
ody force, k is the number of time step, idt is the reciprocal of time step, vu is kinematic viscosity and n is face normal
ector. h is the element length.
Fig. 4 shows the definitions of the stabilization parameters and penalty parameters in Eqs. (8) and (10).
Fig. 5 shows the quadrature rule in the code. Four quadrature points are used for the volume integration in this paper.
Fig. 6 shows some predefined functions in the variational formulation. epsilon(u) is the symmetric part of the velocity

radient tensor, sigma(u, p) is the stress tensor, and Identity is the identity matrix.
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Fig. 4. Stabilization and penalty parameters.

Fig. 5. Definition of quadrature rule.

Fig. 6. Predefined functions.

Fig. 7. Residuals of momentum and continuity equations.

Fig. 8. Galerkin part in the code.

Fig. 7 shows the definitions of the residuals of momentum and continuity equations in the code. nabla_grad(u) denote
the velocity gradient and nabla_div(T) denote the divergence of a tensor T. Please note that Laplacian operator in the
residual of momentum equations is zero since linear basis functions are used (a L2 projection could be used to approximate
he Laplace operator [63].)

Figs. 8 and 9 show the Galerkin formulation, the entire ALE-VMS formulation, respectively. Fig. 10 shows the FEniCSs
ode after weak BC is added. As can be seen, it is natural to define the complex functions and their derivative of the
ariational formulation in a very convenient way by using the powerful UFL language in FEniCS, which will automatically
ransfer the variational formulation into a high performance C++ finite element code.

. Numerical simulations

To demonstrate the capability of the solver, flow past a stationary sphere at laminar flow region is first simulated with
otating meshes to validate the CFD solver in FEniCS. Then, the solver is used to simulate a tidal turbine rotor with both
niform inflow and turbulent inflow conditions with different turbulence intensities.
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Fig. 9. ALE-VMS part in the code.

Fig. 10. Weak BC part in the code.

Table 1
Number of nodes and elements.
Mesh Num. of elements

Coarse 546,468
Medium 1,322,317
Fine 4,233,195

Table 2
Element lengths of the meshes.
Mesh Sphere Refined box Out box

Coarse 0.004 0.020 0.20
Medium 0.003 0.015 0.15
Fine 0.002 0.010 0.10

Table 3
Drag coefficients.

Coarse Medium Fine Reference

Cd 0.581 0.585 0.588 0.590 [64]

3.1. Flow past a sphere with rotating meshes

Flow past a stationary sphere at Re = 400 [64] is widely utilized for validation purpose for CFD solvers, due to rich
experimental or computational results in the literature. Although this problem is typically solved with fixed meshes,
to demonstrate the moving-domain features of the ALE-VMS, a fixed angular speed of 5 rad/s is prescribed for the fluid
omain. Considering the fluid velocity is totally independent of the fluid domain velocity, the ALE-VMS simulations should
roduce the same results as that with fixed meshes for this problem.
Fig. 11 shows the mesh of the problem. The diameter of the sphere is 0.2. The values of inflow velocity and kinematic

iscosity are chosen such that the desired Re number is achieved. A refined region is built around the sphere to resolve
low physics better. Refinement study of the element length is performed. The mesh statistics of the three meshes is
ummarized in Tables 1 and 2. Since the Re is low, strong no-slip boundary condition is used on the sphere.
Fig. 12 shows the vortex structure based on Q -criterion, which is defined as Q =

1
2 (|O|

2
− |S|2), where S =

1
2 (∇u + (∇u)T ) is the rate of strain tensor and O =

1
2 (∇u − (∇u)T ). Classis Hairpin vortex [65] can be observed. Table 3

provides the comparison of the predicted averaged drag coefficients and the reference result from [64]. As the mesh size
is refined, drag coefficients predicted by the present approach gradually converge to the reference result.

3.2. Tidal turbine simulations with uniform and turbulent inflow conditions

In this section, the FEniCS CFD solver is utilized to simulate a three-blade tidal turbine rotor with both uniform and
turbulent inflow conditions. The tidal turbine rotor has a pitch angle of 20◦ and a radius of 0.4 m, obtained from [66]. This
turbine design is also used in our previous free-surface simulations [67]. For more details about the turbine, the readers
are referred to [66]. The front side and back side of the turbine are shown in Fig. 13. The operation condition is set as
follows: the rotation rate is 28.125 rad/s, and inflow velocity is 1.5 m/s, which defines the tip speed ratio (TSR) as 7.5.
Fig. 14 shows the computational domain, which is a cylinder rotating with the same rotational speed of the rotor during
the simulations. A refined inner cylinder is designed to capture the wake better. As shown in Fig. 15, this refined cylinder
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Fig. 11. Mesh of flow past sphere (fine mesh).

Fig. 12. Vortex structure colored by velocity magnitude.

Table 4
Number of nodes and elements.
Cases Num. of nodes Num. of elements

Uniform 989,118 5,853,413
Turbulent 1,080,942 6,398,312

Table 5
Element length for different regions (m)
Outer cylinder Refined region Rotor

0.4 0.02 0.0005

is extended to the inlet for the turbulent mesh to capture the inflow turbulence. The mesh statistics are summarized in
Tables 4 and 5. The boundary conditions are set as follows. Strong boundary condition is utilized for the inlet. Traction
free boundary is used for the side wall of cylinder. Zero pressure is used for the outlet. Weak enforcement of no-slip
boundary condition is used for the fluid–turbine interface. Simulation is performed until the flow reach to turbulence
statistical stationary stage with a constant time step ∆t = 10−4 s.

.2.1. Inflow turbulence generation
To generate the inflow turbulence for tidal turbine simulation, an offline code using synthetic eddy method (SEM) [68]

s utilized. SEM makes use of Lagrangian treatment for the vortices and assumes the velocity at one point is the
ombination of the influence from all the neighboring vortices. The vortices are generated randomly and move with
ean stream velocity. In SEM, the velocity fluctuation u′

i(x) that is influenced by N vortices is defined by the following
equation:

u′

i (x) =
1

√
N

N∑
k=1

aijσ k
j f

k
σ

(
x − xk

sk

)
(11)

here xk is the position of the kth vortex, sk is empirical length scale of the vortex and f kσ is the shape function. σ k
j contains

andomly assigned eddy intensities which obey a Gaussian distribution with zero mean value and a standard deviation
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Fig. 13. Geometry of the tidal turbine.

f 1. The coefficient aij are defined as

aij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
R11 0 0

R21

a11

√
R22 − a221 0

R31

a11

R32 − a22 · a31
a22

√
R33 − a231 − a232

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12)

here the Reynolds stress Rij needs to be calibrated. For details on how to calibrate and implement the SEM method, the
eaders are referred to [68]. For the tidal turbine simulation, three set of inflow turbulence with a mean of 1.5 m/s are
enerated with turbulence intensity I = 5%, 10% and 15%, respectively. The SEM approach is directly applied on the inlet
ith unstructured triangular elements of the tidal turbine domain to generate the inflow turbulence.

.2.2. Numerical results and discussion
Fig. 16 shows the instantaneous velocity magnitude of the cut plane 1 (see Fig. 14 for the location). For the uniform

nflow case, we can see the typical tip velocity profile that is widely observed in wind turbine and tidal turbine simulations
sing uniform inflow conditions. As increasing turbulence intensity, the incoming turbulence would not only influence
he tip velocity distribution but also change the velocity profile near the turbine blade chord. The difference between
niform and turbulent inflow conditions is non-negligible once the turbulence intensity is higher than 5%.
Fig. 17 shows the velocity magnitude on the middle plane (y = 0). For uniform inflow case, the velocity magnitude is

early axis-symmetric in the wake region in the fully developed stage, while the profile becomes quite irregular with
urbulent inflow conditions. The incoming turbulence causes higher fluctuations as the turbulent intensity increases.
hese velocity fluctuations are important for multiple turbine simulations because the turbulent wake would influence the
ownstream turbine. Fig. 18 shows vorticity iso-surfaces based on Q-criterion. For clarity, vortex in front of the turbine
s clipped off for the turbulent inflow cases. As shown in Fig. 18, a large amount of tip vortex is generated due to the
otation of the rotor. However, for the case of I = 15.

Thrust coefficient CT and power coefficient CP are the most important quantities for evaluating the tidal turbine
erformance. CT and CP are given by

CT =
4F

0.5ρwπD2U2
0

(13)

CP =
4Tω

0.5ρwπD2U3
0

(14)

where F is thrust, T is torque, ρw is water density, D is the diameter of the turbine, U0 is the mean inflow water speed,
ω is the rotational speed.
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Fig. 14. Computational domain of the tidal turbine.

Fig. 15. Mesh of the tidal turbine.

Fig. 19 shows the time history of the thrust and power coefficients for the uniform and turbulent inflow cases. For
he uniform case, the averaged experiment measurement from [66] is also plotted for comparison. The experiment data
e use to compare is the case of deep-tip immersion of 0.55D (D is diameter of the tidal turbine). The distance between
enter of tidal turbine and water surface is big enough to neglect the free surface effect. Good agreement is achieved.
lease note that the experiments conducted in [66] only provides mean coefficients with uniform inflow conditions. From
ig. 19, it is also seen that, the coefficient fluctuation increases as the inflow turbulence intensity increases. Table 6 shows
ean value and standard deviation of the thrust and power coefficients. The mean value of thrust and power coefficient
ecreases as the increase of turbulence intensity. Experimental results from [69] also show the same trend for the mean
alue of thrust and power coefficients (please note the experiment is performed using another similar three-blade turbine
esign). It also shows that the influence of inflow turbulence on the mean thrust coefficient is smaller than that on the
ean power coefficient. Compared with mean values, the standard deviation is more sensitive to the inflow turbulence

ntensity. For the thrust and power coefficients, standard deviations scale almost linearly with the turbulence intensity.
xperiment results in [69] show this trend as well.
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Fig. 16. Instantaneous velocity magnitude of cut plane 1.

Table 6
Statistics of thrust and power coefficient of tidal turbine.

Inflow CT CP σCT σCP

Uniform 0.814 0.403 0.0112 0.0120
Experiment [66] 0.85 0.42 – –
I=5% 0.807 0.393 0.0238 0.0255
I=10% 0.802 0.390 0.0396 0.0435
I=15% 0.783 0.368 0.0594 0.0644

4. Conclusion

A moving-domain CFD solver is developed by deploying ALE-VMS method with weak BC in FEniCS. The implementation
details are presented. Flow past a sphere with Re = 400 is simulated with moving meshes to validate the solver. Refinement
study shows that the results quickly converge to high-resolution DNS results. The solver is utilized to simulate tidal turbine
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Fig. 17. Instantaneous velocity magnitude of the middle plane (y = 0).
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Fig. 18. Vorticity isosurface colored by velocity magnitude.

in both uniform inflow and turbulent inflow conditions. For the uniform inflow case, good agreement is achieved between
the experiment data and computational results. For the turbulent inflow cases, as the turbulence intensity increases, the
mean thrust coefficient decreases from 0.814 to 0.783 while the mean power coefficient decreases from 0.403 to 0.368. The
standard deviation of thrust coefficient increases from 0.0112 to 0.0594 while the standard deviation of power coefficient
increases from 0.0120 to 0.0644 from uniform inflow case to turbulent inflow case with I = 15%. The solver will be
open-sourced in the near future. Due to the flexibility and easiness of being upgraded, the solver can be widely applied
to offshore, and ocean engineering problems, where CFD calculations play an essential role.

Acknowledgments

The authors gratefully acknowledge the computing resources and startup funds provided by the University of Illinois
at Urbana–Champaign.



544 Q. Zhu and J. Yan / Computers and Mathematics with Applications 81 (2021) 532–546
Fig. 19. Time history of thrust and power coefficients.
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