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Abstract

High fidelity thermal multi-phase flow simulations are in much demand to reveal the multi-scale and multi-physics
henomena in metal additive manufacturing (AM) processes, yet accurate and robust predictions remain challenging. In this
aper, we present a novel computational framework by mixing interface-capturing/interface-tracking methods for simulating
he thermal multi-phase flows in metal AM applications, focusing on better handling the gas-metal interface, where AM
hysics, such as phase transitions and laser-material interactions, mainly takes place. The framework, built on level set method
nd variational multi-scale formulation (VMS), features three major contributions: (1) a simple computational geometry-based
e-initialization approach, which maintains excellent signed distance property on unstructured meshes, re-constructs an explicit
epresentation of gas-metal interface from the level set, and facilitates the treatment of the multiple laser reflections during
eyhole evolution in AM processes; (2) a fully coupled VMS formulation for thermal multi-phase governing equations, including
avier-Stokes, level set convection, and thermodynamics with melting, solidification, evaporation, and interfacial force models;

nd (3) a three-level recursive preconditioning technique to enhance the robustness of linear solvers. We first compare the
eometry-based re-initialization with the Eikonal partial differential equation (PDE)-based approach on two benchmark problems
n level set convection and bubble dynamics. The comparison shows the geometry-based approach attains equivalent and even
etter performance on key criteria than the PDE-based counterpart. We then apply the developed framework to simulate two
M experiments, which Argonne National Laboratory has recently conducted using in-situ high-speed, high-energy x-ray

maging. The proposed framework’s accuracy is assessed by thoroughly comparing the simulated results against experimental
easurements on various quantities. We also report important quantities that experiments cannot measure to show the modeling

apability.
c 2021 Elsevier B.V. All rights reserved.

eywords: Geometry based re-initialization; VMS; Level set method; Additive manufacturing

1. Introduction

Multi-phase flows ubiquitously exist in natural and engineering systems. Their numerical simulations have
dvanced many scientific and technological areas, such as bubble dynamics, propeller design, oil refining, and
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chemical reaction optimization, to name a few. In recent years, multi-phase flow simulations are attracting attention
from metal additive manufacturing (AM): a type of technology with the potential to reshape various industries
because of its superior capability to print complex metallic parts directly from digital models without the constraints
of traditional manufacturing technologies [1]. In metal AM simulations, thermal multi-phase flow-based models,
which solve coupled multi-phase Navier–Stokes and thermodynamics equations with phase transitions, are widely
deemed the state-of-the-art predictive tools with the highest fidelity. They complement the expensive experiments,
such as in-situ high-speed, high-energy x-ray imaging, to reveal the multi-scale and multi-physical phenomena
and derive the process–structure–property–performance relationship in metal AM. For the past several years, many
researchers have proposed various methods in this direction. For example, Lawrence Livermore National Laboratory
developed a thermal-fluid solver using the Arbitrary-Lagrangian Eulerian (ALE) technique [2–5]; Yan’s group at
National University of Singapore developed a set of volume-of-fluid (VOF) based thermal-fluid models to simulate
metal AM problems, including directed energy deposition (DED) and multi-layer and multi-track laser powder bed
fusion (LPBF) processes [6–10]; Panwisawas et al. also used a VoF approach by using OpenFOAM to analyze the
inter-layer and inter-track void formation [11]; Lin et al. developed a control-volume finite element approach to
simulate DED and LPBF processes [12,13]. Li et al. developed a thermal-fluid model by combining the level set
method and Lagrangian particle tracking to investigate powder–gas interaction in LPBF processes [14]. One should
note that the above is not a complete literature review of recent method developments. A literature review is also
not this paper’s focus. For a comprehensive survey on metal AM modeling, we refer interested readers to a recent
review article in [15].

Despite the progress that has been made, thermal multi-phase flow simulations for metal AM applications
till impose tremendous challenges on numerical methods. The first challenge is how to treat the gas-metal
nterface, where AM physics, such as phase transitions and laser-material interactions, mainly occurs. There are
wo types of approaches to handle material interface evolution in multi-phase flows. This first option is interface-
racking, including Arbitrary-Lagrangian Eulerian (ALE) [16], front-tracking [17], boundary-integral [18], and
pace–time [19]. The material interface evolution in interface-tracking approaches is explicitly represented by a
eforming and compatible mesh that moves with the material interface. These approaches possess high accuracy
er degree of freedom and have been applied to many free-surface flow problems [20]. However, mesh motion and
ven re-meshing are often required if the material interface undergoes large deformations or singular topological
hanges, which turn out to be very common in metal AM applications even without considering powders. Another
ption is interface-capturing, including level set [21,22], front-capturing [23], volume-of-fluid (VOF) [24], phase
eld [25–31], and diffuse-interface methods [32,33]. In interface-capturing approaches, an auxiliary field is defined

n an Eulerian domain to represent the interface implicitly. The evolution of the interface is governed by an additional
calar partial differential equation (PDE). Because the interface evolution is embedded in the PDE, these approaches
an automatically handle topological interface changes without requiring mesh motion or re-meshing procedures.
nterface-capturing approaches have been widely applied to a wide range of interfacial problems, including bubble
ynamics [34–36], jet atomization [37], and free-surface flows [38,39]. However, interface-capturing approaches
eed higher mesh resolution around the interface to compensate for their lower accuracy. Furthermore, in metal
M applications, an implicit representation of the gas-metal interface imposes technical burdens to handle the

aser-material interaction, such as the multiple laser reflections on the melt pool interface.
The second challenge is that metal AM processes, compared with other multi-phase flow problems, involve more

hysics interplay at a wide range of spatiotemporal scales, including thermodynamics, multi-phase melt pool fluid
ynamics, phase transitions (e.g., melting, solidification, evaporation, and condensation), laser–metal interaction,
nd interface topological changes. Besides, the property ratios are larger than those of two-phase flows in other
ngineering problems (e.g., free-surface flows in ocean engineering). The resulting linear systems have higher
ondition numbers due to these aspects, introducing convergence issues for partitioned methods and necessitating
ore robust coupling solution strategies.
Aiming to address the two challenges, we develop a mixed interface-capture/interface-tracking formulation for

hermal multi-phase flows for metal AM applications. The reason we call it a mixed formulation is two-fold. (1) We
rst utilize a level set method to model the gas-metal interface evolution (interface capturing). (2) The gas-metal

nterface is then explicitly re-constructed by triangulating the intersection points between the zero level set and mesh
lement edges (interface tracking). Such combination takes full advantages of the level set method’s capability

f handling topological interface changes and the convenience of an explicit gas–metal interface representation
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on treating multiple laser reflections. To ensure the level set field’s signed distance property, we abandon the
Eikonal equation (PDE-based) re-initialization used in our previous work and develop a purely computational
geometry-based approach in this paper. We show that the geometry-based re-initialization approach attains equivalent
and sometimes even better performance than the PDE-based counterpart. The method is very efficient, simple to
implement on unstructured tetrahedral meshes, and simultaneously constructs a triangulation with an octree data
structure for explicitly representing the interface, facilitating the ray-tracing process for multiple laser reflections.

The variational multiscale formulation (VMS) is utilized as a turbulence model to solve the coupled multi-phase
avier–Stokes, level set, and thermodynamics equations augmented with melting, solidification, and evaporation
odels. Although the characteristic length scales of metal AM processes are small, the melt pool flow speed can

each to order of m/s, resulting in non-negligible turbulence. Research in [40] showed the effects of with and without
urbulence model on the predictions of melt pool dimensions. VMS, because of its variational consistency, flexibility,
nd previous success in multi-phase flow simulations, is a very natural choice for the problems considered in this
aper. We employ density-scaled continuous surface force (CSF) models to handle surface tension, Marangoni stress,
ecoil pressure, laser flux, and other boundary conditions on the gas-metal interface. The generalized-α method is

utilized to integrate the VMS formulation over time. We employ Newton’s method to linearize the nonlinear nodal
systems at each time step, which leads to a two-stage predictor/multi-corrector algorithm. The resulting linear system
is solved in a fully coupled fashion to enhance robustness by using a generalized minimal residual method (GMRES)
with a three-level recursive preconditioning technique we proposed.

This paper is structured as follows. Section 2 presents the details of the computational framework, including
geometry-based re-initialization, governing equations, ray-tracing for laser reflections, VMS formulation, time-
integration, linear solver, preconditioning, and mass-fixing. Section 3 presents four numerical examples to test the
performance of the proposed framework. The first two problems are used to compare the performance between
the geometry-based re-initialization and the PDE-based re-initialization. The next two are the real-world problems,
aiming to assess the proposed framework’s accuracy and predictive capability for metal AM applications. The
simulation results are carefully compared with experimental data from Argonne National Laboratory. The quantities
that experiments cannot measure are also reported. We summarize the contributions and limitations of this paper
and specify future directions in Section 4.

2. Computational methods

2.1. Level set method

Let Ω denote the domain of a metal AM problem, consisting of the metal subdomain Ωm and gas subdomain
Ωg , and the gas–metal interface ΓI is implicitly represented as

ΓI = {x|φ(t, x) = 0, ∀x ∈ Ω} (1)

where φ(t, x) is a level set field, whose value is the signed distance function from x to the gas-metal interface ΓI ,
namely,

φ(t, x) =

{
dist(x,ΓI ) if x ∈ Ωm

−dist(x,ΓI ) if x ∈ Ωg
(2)

The evolution of φ is governed by the following convection equation
∂φ

∂t
+ u · ∇φ = 0 (3)

here u is the fluid velocity.

.1.1. PDE-based re-initialization
The signed distance property of level set functions can be polluted by strong convective velocity. One popular

e-initialization (or re-distancing) technique is to solve the following pseudo-time dependent Eikonal equation with
he constraint on the gas-metal interface.

∂φd
+ sign(φ)(∥∇φd∥ − 1) = 0 in Ωm and Ωg (4)
∂ t̃
3
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Fig. 1. Element-wise triangulation. First intersection scenario: Three cloud points and one triangle (left). Second intersection scenario: Four
cloud points and two triangles (right).

φd = 0 on ΓI (5)

φd (t̃ = 0, x) = φ(t, x) in Ωm and Ωg (6)

where φd is the re-initialized level set, t̃ is the pseudo-time. The pseudo-temporal discretization (∆t̃) is scaled by
the element length around the interface. The technique was employed in our previous work in conjunction with
the variational multi-scale method (VMS) for many multi-phase problems [41–44]. The major advantage of this
approach is that it only needs to solve a PDE without requiring one particular mesh type. However, an effective
pseudo-time integration scheme is necessary, and a linear solver is needed if implemented implicitly. How to choose
the pseudo-time step can be tricky for unstructured meshes, and the choice has a significant effect on the accuracy.
Besides, lacking an explicit representation of the gas-metal interface still imposes technical burdens on handling
the multiple laser reflections in metal AM problems.

2.1.2. Geometry-based re-initialization
In this paper, we propose a computational geometry-based re-initialization approach specifically designed for

metal AM simulations using unstructured meshes. The concept of using geometry for re-initializing level set field
can date back to [45,46] but has not been employed in thermal multi-phase flows. As we show below, the approach
is simple to implement on unstructured tetrahedral meshes and re-constructs an explicit interface representation
from the level set field, which provides significant convenience to handle the multiple laser reflections in metal AM
processes.

The first step of the geometry-based re-initialization is to extract all the intersection points between the gas–
metal interface (φ = 0) and every element edge of the mesh. To differentiate from the intersections between laser
rays and gas-metal interface, we call these intersections “cloud points”, denoted as a set by Ξ . The cloud points’
locations are obtained by the following procedure. We first check the signs of level-set function value on the nodes
of each element. If the signs change, this element intersects with the gas–metal interface. Considering that iso-
parametric elements are employed, we can get the parametric coordinates ξ by solving

∑
NA(ξ )φA = 0, where

NA(ξ ) and φA are the basis function and nodal level set value. We then use parametric coordinates ξ to get the
hysical coordinates of the cloud points by

∑
NA(ξ )x A, where x A is the nodal physical coordinates. The linear

etrahedron element is used in our paper. After all the cloud points’ coordinates are identified, a triangulation of
he cloud points is constructed. At first glance, the triangulation process seems to require sophisticated algorithms,
uch as Delaunay triangulation [47]. The triangulation can be performed in an element-wise fashion and is suitable
or parallel computing. Fig. 1 shows the only possible two intersection scenarios between a tetrahedral element and
he gas–metal interface. In the first scenario, the intersection results in three cloud points, and a triangle can be
ormed by connecting each two of them. In the second scenario, the intersection results in four cloud points, and
wo triangles can be formed similarly. Then all the triangles are catenated to construct a triangulation that forms an

xplicit representation of the gas–metal interface.

4
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Fig. 2. Unit normal vector definition of a cloud point in the triangulation.

The second step is to calculate the unit normal vector of the cloud points based on their triangulation. Because
the triangulation is only C0 continuous on the cloud points, the normal vector, as shown in Fig. 2, is computed
by averaging of the unit normal vector of the triangles (weighted by their areas) associated with this cloud point,
namely,

n =

∑
i ni Ai∑

i Ai
/

⏐⏐⏐⏐∑i ni Ai∑
i Ai

⏐⏐⏐⏐ (7)

where Ai and ni are the area and unit normal vector of the triangles.
The third step is to restore signed distance for each mesh node by minimizing its normal distance to the gas–

metal interface represented by the triangulation of the cloud points. For a mesh node denoted by xi , the re-initialized
level set φd (t, xi ) is defined as

φd (t, xi ) = sign[φ(xi )]|(xi − ym) · nm | (8)

where nm , defined by Eq. (7), is the unit normal vector of the cloud point ym , which has the minimal Euclidean
distance to xi , namely,

m = arg min
j∈Ξ

(
|xi − y j |

)
(9)

One can find the minimal distance and the corresponding cloud point by looping all cloud points. The complexity
of this brute force approach for each mesh node is O(N ) if there are N cloud points. The approach can be intractable
in metal AM problems, given the large mesh size that also results in a large number of cloud points. To speed up
the minimization, we first organize the cloud points Ξ into an octree structure based on the bounding boxes of
the domain. Fig. 3(a) and (b) show a 2D presentation of the octree construction process. The minimal distance
between a mesh node xi and the cloud points is identified by a traversal on the octree with pruning. The algorithm
is described as follows.

• Step 3.1: Randomly pick a cloud point from the octree, and set the distance between xi and this cloud point
to rm and set the cloud point’s index to m. Then, start the traversal from the octree root.

• Step 3.2: For each tree node, calculate the minimum distance between xi and the associated bounding box if
xi is outside the current bounding box. If the distance is bigger than rm , skip this path. If not, go to step 3.3.

• Step 3.3: Repeat the process described in step 3.2 for the 8 sub-bounding boxes. If arriving at a leaf of the
octree, calculate the distance between xi and the cloud point associated with this leaf. Set this distance to rm

and the cloud point’s index to m, if the distance is smaller than rm .
• Step 3.4: Return m and r , and calculate re-initialized φ (t, x ) based on Eq. (8).
m d i

5
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o

I

Fig. 3. A 2D description of the geometry-based re-initialization. (a): Cloud points. (b): Quad-tree structure of the cloud points. (c) Computation
f signed distance function.

t is easy to show that the complexity of this approach for each mesh node is only O(logN ). Compared with the
PDE-based approach, this geometry-based approach is more efficient and simple to implement. Firstly, the PDE-
based approach involves many user-defined numerical parameters (e.g., interface thickness and pseudo time step),
the choices of which influence the efficiency. Secondly, how long one integrates the Eikonal equation over pseudo
time, the employed time-integration scheme, linear solver/preconditioner (if an explicit scheme is utilized) also affect
the efficiency of the PDE-based approach. In contrast, the geometry-based counterpart recovers signed-distance
property everywhere and does not involve any of these user-defined parameters. Our non-exhaustive experience
shows the geometry-based approach is slightly faster than the PDE-based approach we developed in [41–44]. More
importantly, during the re-initialization, an explicit gas-metal interface, described by the triangulation of cloud
points, is constructed, which provides tremendous convenience in the heat laser model, as we will show later.

2.2. Governing equations of thermal multi-phase flows

2.2.1. Property evaluation
The thermal multi-phase flows are governed by a unified mathematical model, in which the material properties

are phase-dependent. In the model, the level set field is utilized to distinguish the gas phase and the metal phase,
and the liquid fraction fl is utilized to distinguish the liquid phase and the solid phase in the metal. For a material
property χ (φ, fl) (e.g., density, dynamic viscosity, specific heat, and thermal conductivity), it is evaluated by the
following linear combination

χ (φ, fl) = H (φ) [(1 − fl)χs + flχl] + [1 − H (φ)] χg (10)

where χs , χl , and χg are the values of the material property in the solid, liquid, and gas phases, respectively. H (φ)
is a regularized Heaviside function, defined as

H (φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 φ ≤ − ϵ

1
2

(
1 +

φ

ϵ
+

1
π

sin(
φπ

ϵ
)
)

|φ| < ϵ (11)
1 φ ≥ + ϵ

6
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where ϵ is a numerical gas–metal interface thickness, scaling with the local element size. fl is a function of
emperature T , defined as

fl =

⎧⎪⎨⎪⎩
0 T < Ts
T −Ts
Tl−Ts

Ts ≤ T ≤ Tl

1 T > Tl

(12)

where Ts and Tl are the solidus and the liquidus temperature of the metal material, respectively.

2.2.2. Navier–Stokes equations of multi-phase flows
The fluid motion obeys the following Navier–Stokes equations.

ρ

[
∂u
∂t

+ ∇ · (u ⊗ u) − g
]

− ∇ · (−p I + 2µ∇
s u) − f s f = 0 in Ω (13)

∇ · u − men · ∇(
1
ρ

) = 0 in Ω (14)

here u and p are the velocity and pressure fields, ρ is the density, µ is the dynamic viscosity, g is the gravitational
cceleration, ∇

s is the symmetric gradient operator, I is a 3 × 3 identity tensor, and f s f represents the interfacial
orces that will be defined later. In this model, incompressibility (divergence-free of velocity) still holds in the
etal and gas phases individually. However, compressibility is induced at the gas-metal interface due to the local

vaporation, which is accounted for by the second term of the continuity equation in Eq. (14), where n = −
∇φ

|∇φ|

is the unit normal vector at the gas-metal interface pointing from metal phase to gas phase. One should note the
definition of this normal is different from that of cloud points defined in the previous section. At last, me is the net
evaporation mass flux rate. The formula for me is defined as:

me = ζ Psat (T )
√

mmol

2π Rgas T
(15)

where the coefficient ζ accounts for the condensation effect and is set to 0.4 in this paper, mmol is the molar mass
of evaporating species, Rgas is the gas constant, Psat is the saturation pressure based Clausius–Clapeyron relation,

hich reads

Psat (T ) = Pambexp
[
−Lvmmol

Rgas
(

1
T

−
1

Tevap
)
]

(16)

here Lv is the latent heat of vaporization, Tevap is the boiling temperature, Pamb is the ambient pressure and set
o 101 kPa in the metal AM simulations here. A complete derivation of Eq. (14) can be found in the last author’s
revious work in [48], which adopted a control volume finite element discretization. This evaporation model is
lso similar to those proposed in [49–52]. One should note that our approach is based on a continuum model and
ssumes that the Mach number of the vapor flow is very low, which is valid for the problems considered in the
aper. This model cannot handle the extreme situation if the vapor escaping speed is higher than the sound speed
ecause the continuum assumption does not hold in the Knudsen layer and the numerical interface thickness (at the
cale of several micrometers) is much larger than the Knudsen layer thickness (at the scale of several mean free
ath). An alternative laser model that can potentially handle this situation can be found in [53].

Interfacial forces play essential roles in metal AM physics. Although the air–metal interface is recovered in the
eometry-based re-initialization stage, it does not conform to the volumetric mesh, making the traction BC based on
nterface-tracking infeasible. Thus, the continuum surface force (CSF) model [54,55] based on interface-capturing
s employed here, and four types of interfacial forces are modeled in f s f , which reads

f s f = f σ + f m + f e + f r (17)

here f σ and f m are the surface tension and Marangoni force, defined as

f σ = δρσκn (18)

f m = δρ

∂σ

∂T
[∇T − n(n · ∇T )] (19)
7
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where σ = σ0 +
∂σ
∂T (T −T0) is the surface tension coefficient, where σ0 is surface tension coefficient at the reference

temperature T0, ∂σ
∂T is the Marangoni coefficient, δρ = ( 2ρ

ρm+ρg
) ∂ H

∂φ
is a density-scaled Dirac delta function. κ = −∇·n

is the mean curvature of the gas–metal interface. Calculating κ needs the second-order differentiation of φ, the
evaluation of which at quadrature points necessitates a L2 projection if linear tetrahedron elements are employed
in spatial discretization. The projection can be avoided if higher-order basis functions, such as isogeometric basis
functions [56,57], are adopted [43].

f e and f r account for the evaporation force and recoil pressure, which reads

f e = ∇(
m2

e

ρ
) (20)

f r = −δρ Precoil n (21)

here Precoil is the recoil pressure, defined as

Precoil = 0.54Psat (22)

.2.3. Energy equation
The temperature field satisfies the following conservation law of enthalpy.

ρcp
∂T
∂t

+ ρcpu · ∇T + ρLm
∂ fl

∂t
+ ρLm u · ∇ fl − ∇ · (κ∇T ) − Qs f = 0 (23)

where cp is the specific heat, Lm is the latent heat of fusion, κ is the thermal conductivity, Qs f is the energy source
term handled by a CSF model, which consists of three parts, namely,

Qs f = Qr + Qe + Ql (24)

where Qr accounts for the radiative cooling, defined as

Qr = −δρσsbϵ(T 4
− T 4

0 ) (25)

where σsb is the Stefan–Boltzmann constant, ϵ is the material emissivity. Qe accounts for the evaporative cooling,
defined as

Qe = −δρ Lvme (26)

At last, Ql accounts for the heat source, defined as.

Ql = δρ Is (27)

where Is is the equivalent laser ray energy after considering the multiple reflections. The definition is described in
the next section.

2.3. Ray tracing for multiple laser reflections

Metal AM processes involve violent laser-material interactions. In particular, the multiple laser reflections are
vital factors that determine the temperature and melt pool evolution. They must be evaluated carefully to achieve
accurate AM process prediction. To this end, a ray-tracing technique is presented [58–62]. The laser is uniformly
decomposed into Nray rays first. The initial energy of each ray is computed by

I 0
i =

∫
Ai

I (x)d S (28)

where i in the ray index, Ai is the area underneath the ray, and I (x) is the distribution of original laser, taking a
Gaussian profile as

I (x) =
2Qη

2 exp
[
−2|x − x0|

2

2

]
(29)
πrb rb

8
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T
f

Fig. 4. The laser decomposition into multiple rays.

Fig. 5. 2D description of the ray tracing and laser model.

where Q is the laser power, rb is the beam radius, η is the laser absorption coefficient, x0 is the laser center. Fig. 4
sketches a 2D description of the decomposition.

For each ray, we trace all the intersection points between it and the gas-metal interface during the multiple
reflections process. Identifying these intersections can also be accelerated by taking advantage of the octree structure
of the triangulated surface. The procedure is presented as follows, and a 2D description is shown in Fig. 5, in which
a ray has two intersections with the gas-metal interface. Let Ni denote the number of intersections between the i th
ray and the gas-metal interface. For the j th ( j = 1, 2, . . . , Ni ) intersection, the absorbed ray energy, denoted by
I a
i j , and the reflected ray energy, denoted by I r

i j , are computed as

I a
i, j = α(θ )cos(θ )I r

i, j−1 (30)

I r
i, j = [1 − α(θ )] cos(θ )I r

i, j−1 (31)

hese two recursive relationships imply that the current absorbed and reflected energy come from the ray reflected
rom the previous intersection. Thus, I r

= I 0. The distribution of absorbed and reflected energy depends on the
i,0 i

9
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fl
v

incident angle θ and a ray absorption coefficient, also a function of θ , defined as

α(θ ) = 1 −
1
2

[
1 + (1 − ϵcosθ )2

1 + (1 + ϵcosθ )2 +
ϵ2

− 2ϵcosθ + 2cosθ2

ϵ2 + 2ϵcosθ + 2cosθ2

]
(32)

here ϵ is a material constant associated with the material’s electrical conductance.
For each intersection, the absorbed ray energy is distributed on the gas-metal interface by a Gaussian profile,

amely,

pi, j (x) =
1

2πβ2 exp
−

|x−xi, j |
2

2β2 (33)

here xi, j is the coordinates of the intersection, β is a length scale that is 3 times of the local element length.
ith the above definitions, Is in Eq. (27) is computed by summing of the absorbed energy of all the intersections,

amely,

Is =

Nray∑
i=1

Ni∑
j=1

I a
i, j pi, j (34)

.4. Variational multiscale formulation

Residual-based variational multi-scale (VMS) formulation is utilized to solve the coupled thermal multi-phase
ows equations in Eqs. (3), (13), (14), and (23). Let Vu , Vp, VT , and Vφ denote the trial function spaces for
elocity, pressure, temperature, and level set unknowns, respectively, and Wu , Wp, WT , and Wφ denote test function

spaces for momentum, continuity, temperature, and level set convection equations, respectively. The semi-discrete
formulation based on VMS is stated as follows. Find u ∈ Vu , p ∈ Vp, T ∈ VT , and φ ∈ Vφ such that for all
w ∈ Wu , q ∈ Wp, s ∈ WT , and η ∈ Wφ ,

BVMS ({w, q, s, η}, {u, p, T, φ}) − FVMS ({w, q, s, η}) = 0 (35)

where BVMS ({w, q, s, η}, {u, p, T, φ}) and FVMS ({w, q, s, η}) are given as

BVMS ({w, q, s, η}, {u, p, T, φ}) =

∫
Ω

w · ρ

[
∂u
∂t

+ ∇ · (u ⊗ u) − g
]

dΩ

+

∫
Ω

∇
sw :

(
−p I + 2µ∇

s u
)

dΩ

+

∫
Ω

q
[
∇ · u − men · ∇(

1
ρ

)
]

dΩ

−

∫
Ω

(
u · ∇w +

∇q
ρ

)
· u′ dΩ

−

∫
Ω

p′
∇ · w dΩ +

∫
Ω

w · (u′
· ∇u) dΩ

−

∫
Ω

∇w

ρ
:
(
u′

⊗ u′
)

dΩ

+

∫
Ω

s
(

ρcp
∂T
∂t

+ ρcpu · ∇T + ρLm
∂ fl

∂t
+ ρLm u · ∇ fl

)
dΩ

+

∫
Ω

∇s · κ∇T dΩ −

∫
Ω

u · ∇sT ′ dΩ

+

∫
Ω

η

(
∂φ

∂t
+ u · ∇φ

)
dΩ −

∫
Ω

(u · ∇η) φ′ dΩ (36)

FVMS ({w, q, s, η}) =

∫
w · ρ f s f dΩ +

∫
s Qs f dΩ +

∫
w · h f dΓ +

∫
shT dΓ (37)
Ω Ω ΓN ΓT

10
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where h f and hT are the applied fluid traction and heat flux. u′, p′, and φ′ are the fine-scale velocity, pressure and
level set, given as

u′
= −τM

{
ρ

[
∂u
∂t

+ ∇ · (u ⊗ u) − g
]

− ∇ · (−p I + 2µ∇
s u) − f s f

}
(38)

p′
= −τC ρ

[
∇ · u − men · ∇(

1
ρ

)
]

(39)

T ′
= −τT

[
ρcp(

∂T
∂t

+ u · ∇T ) + ρLm(
∂ fL

∂t
+ u · ∇ fL ) − ∇ · (κ∇T ) − Qs f

]
(40)

φ′
= −τφ

(
∂φ

∂t
+ u · ∇φ

)
(41)

here τM, τC, and τφ are the stabilization parameters, defined as

τM =

(
4

∆t2 +
4∥u∥

2

h2 +
16µ2

ρ2h4

)−1/2

(42)

τC =
h2

3τM
(43)

τT =

(
4

∆t2 +
4∥u∥

2

h2 +
16κ2

ρ2c2
ph4

)−1/2

(44)

τφ =

(
4

∆t2 +
4∥u∥

2

h2

)−1/2

(45)

here h is the minimum edge length of a tetrahedron element. The above formulation features an extension of the
esidual-based VMS of single-phase turbulent flows, first introduced in [63], to thermal multi-phase flow problems.
he terms in Eq. (36) without involving fine-scale quantities are the Galerkin formulations of Navier–Stokes,

emperature, and level set convection equations, respectively. The rest can be interpreted as a stabilized method for
onvection-dominated problems or a large eddy simulation (LES) turbulence model. More method developments
nd engineering applications regarding VMS and stabilized methods for fluid mechanics can be found in [64–75].

.5. Time integration

Generalized-α method [76,77] is employed to integrate the VMS formulation in Eq. (35) in time. Without losing
enerality, let R =

{
RM , RC , RT , Rφ

}T denote the nodal momentum, continuity, temperature, and level set
esiduals, P denote the nodal pressure unknowns, and X =

{
u, T , φ

}T and Ẋ =
{
u̇, Ṫ , φ̇

}T
denote the nodal

elocity, temperature, and level set field unknowns, and their time derivatives. When stepping from tn to tn+1, X
nd Ẋ are linked by the following Newmark-β scheme [78]

Xn+1 = Xn + ∆t
[
(1 − γ )Ẋn + γ Ẋn+1

]
(46)

he reason for separating pressure unknowns from others is that the residual R is evaluated at tn+1 for pressure but
ntermediate states between tn and tn+1 for velocity, temperature, and level set. These intermediate states, Xn+α f

nd Ẋn+αm , are computed as

Ẋn+αm = αm Ẋn+1 + (1 − αm) Ẋn (47)

Xn+α f = α f Xn+1 + (1 − α f )Xn (48)

n Eqs. (46)–(48), γ , αm , and α f are the parameters of Newmark-β and generalized-α methods, chosen based on
he unconditional stability and second-order accuracy and requirements [76]. With the above definitions, the time
ntegration leads to the following nonlinear equations

R(Ẋn+αm , Pn+1) =

⎧⎪⎪⎨⎪⎪⎩
RM

RC

RT

R

⎫⎪⎪⎬⎪⎪⎭ = 0 (49)
φ (Ẋn+αm ,Pn+1)

11
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The above linear systems are solved in a fully coupled fashion by Newton’s method, which results in the following
wo-stage predictor/multicorrector algorithm with a generalized minimal residual solver (GMRES) enhanced with
recursive preconditioning.
Predictor stage:

Ẋ0
n+1 =

γ − 1
γ

Ẋn (50)

X0
n+1 = Xn (51)

P0
n+1 = Pn (52)

where superscript 0 indicates the quantities are initial guesses.
Multicorrector stage: Repeat the following procedure until the reduction of the norm of R satisfies the tolerance.
Step 1. Evaluate intermediate states

Ẋ l
n+αm

= αm Ẋ l
n+1 + (1 − αm) Ẋn (53)

X l
n+α f

= α f X l
n+1 +

(
1 − α f

)
Xn (54)

where l is a Newton-iteration counter.
Step 2. Use the intermediate states to evaluate the residuals and the corresponding Jacobian matrix, which leads

to the following linear systems.⎧⎨⎩
∂ Rl

∂ Ẋn+1
∂ Rl

∂ Pn+1

⎫⎬⎭
{
∆Ẋ l

n+1
∆P l

n+1

}
= −Rl(Ẋ l

n+αm
, P l

n+1) (55)

The above linear equations are solved to get the increments: ∆Ẋ l
n+1 and ∆P l

n+1.
Step 3. Correct the solutions with ∆Ẋ l

n+1 and ∆P l
n+1 as follows

Ẋ l+1
n+1 = Ẋ l

n+1 + ∆Ẋ l
n+1 (56)

X l+1
n+1 = X l

n+1 + γ∆t∆Ẋ l
n+1 (57)

P l+1
n+1 = P l

n+1 + ∆P l
n+1 (58)

.6. Fully-coupled linear solver and recursive preconditioning

The multicorrector stage requires the solution of a large linear system given by Eq. (55), which couples different
omponents of the VMS formulation. To increase the formulation’s robustness, Eq. (55) is solved by a fully coupled
pproach, in which the Jacobian matrix is constructed with all the terms in the VMS represented. For simplicity,
e neglect the time step and iteration counts in the notation and write the Jacobian matrix as

J =

{
∂ R
∂ Ẋ
∂ R
∂ P

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ RM
∂ u̇

∂ RM
∂ p

∂ RM
∂ Ṫ

∂ RM
∂φ̇

∂ RC
∂ u̇

∂ RC
∂ p

∂ RC
∂ Ṫ

∂ RC
∂φ̇

∂ RT
∂ u̇

∂ RT
∂ p

∂ RT
∂ Ṫ

∂ RT
∂φ̇

∂ Rφ

∂ u̇
∂ Rφ

∂ p
∂ Rφ

∂ Ṫ
∂ Rφ

∂φ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(59)

Due to the complexity of thermal multi-phase flow problems and large property ratios, the condition number
f the above Jacobian matrix is very large. Thus, effective preconditioning is necessary. In this paper, we
evelop a preconditioning strategy constructed in a recursive fashion. To facilitate the derivation, let J3 =

∂ RM
∂ u̇

∂ RM
∂ p

∂ RM
∂ Ṫ

∂ RC
∂ u̇

∂ RC
∂ p

∂ RC
∂ Ṫ

∂ RT ∂ RT ∂ RT

⎫⎪⎪⎬⎪⎪⎭ denote the velocity–pressure–temperature block in J , J2 =

⎧⎨⎩
∂ RM
∂ u̇

∂ RM
∂ p

∂ RC
∂ u̇

∂ RC
∂ p

⎫⎬⎭ denote the
∂ u̇ ∂ p ∂ Ṫ
12
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Navier–Stokes block. Let M, M3, and M2 denote the preconditioning matrices for J , J3, and J2, respectively.
ere M is the final preconditioning matrix, which is constructed upon the preconditioning matrix for the level set
lock ∂ Rφ

∂φ̇
and M3 in the following way

M = M∗

3 + M∗

φ − M∗

φ J M∗

3 (60)

where M∗

3 and M∗

φ are defined as

M∗

3 =

{
M3 O
O O

}
(61)

and

M∗

φ =

⎧⎪⎪⎨⎪⎪⎩
O O O O
O O O O
O O O O
O O O Mφ

⎫⎪⎪⎬⎪⎪⎭ (62)

where Mφ is a multigrid preconditioning matrix for ∂ Rφ

∂φ̇
. It should be noted these zero blocks in M∗

3 and M∗

φ are
esigned to ensure that the dimensions of the matrix multiplications in Eq. (60) are consistent.

Similarly, M3 is constructed upon the preconditioning matrix for the temperature block ∂ RT
∂ Ṫ and M2 as follows.

M3 = M∗

2 + M∗

T − M∗

T J3 M∗

2 (63)

here M∗

2 and M∗

T are defined as

M∗

2 =

{
M2 O
O O

}
(64)

nd

M∗

T =

⎧⎨⎩O O O
O O O
O O MT

⎫⎬⎭ (65)

here MT is a multigrid preconditioning for ∂ RT
∂ Ṫ .

Finally, the preconditioning matrix M2 for the Navier–Stokes block J2 is defined as

M2 =

[
I −( ∂ RM

∂ u̇ )−1( ∂ RM
∂ p )

0 I

] [
( ∂ RM

∂ u̇ )−1 0
0 S−1

] [
I 0

−( ∂ RC
∂ u̇ )( ∂ RM

∂ u̇ )−1 I

]
(66)

here S = ( ∂ RC
∂ p ) − ( ∂ RC

∂ u̇ )( ∂ RM
∂ u̇ )−1( ∂ RM

∂ p ) is the Schur complement. Inverse of matrix is obtained by solving
the corresponding linear systems with GMRES. One should note that the construction of M2 is different from
M3 and M because of the special structure of Navier–Stokes equations. The method for M2 is similar to the
nested preconditioning presented in [79]. The choice of M2 is motivated by the fact that pressure serves as a

agrangian multiplier in the system and ∂ RC
∂ p is close to zero considering the stabilization terms are relatively small.

nother preconditioning choice for J is using the inverse of each individual decoupled block for velocity–pressure,
emperature, and level set blocks, which has been employed in our previous work in [41] for thermal multi-phase
ows.

.7. Mass fixing

Mass conservation is important in multi-phase flow problems [80,81]. In the current paper, global mass
onservation is preserved by a mass fixing method extended from our previous work to account for the evaporated
ass in metal AM problems. The residual of the global metal mass conservation equation of metal is defined as∫ T ∫

me(φ)dΓdt + m t (φ) − m0 (67)

0 ΓI

13
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where the first integral is the accumulated evaporated metal mass, m0 is the initial metal mass, m t are the current
metal mass in the domain, defined as

m t (φ) =

∫
Ω

ρm H (φ)dΩ (68)

where ρm is the metal density. To ensure the global mass conversation, the level set field φ, after convection and
re-initialization, is perturbed by a global constant δφ, the value of which is obtained by solving the following scalar
equation, which recovers global mass conservation.∫ T

0

∫
ΓI

me(φ + δφ)dΓdt + m t (φ + δφ) − m0 = 0 (69)

One should note that the above equation is a scalar equation that can be solved efficiently. Besides, since the level set
field is globally shifted by δφ, it does not ruin the signed distance property that is recovered in the re-initialization
stage.

2.8. Implementation details

The above mathematical formulation is implemented as follows.

• Initialization
• Integrate over time: For each time step, start with initial guesses and iterate the following steps until

convergence.

1. Use level set and liquid fraction to get material properties.
2. Apply ray-tracing to get the equivalent laser energy in the heat source model.
3. Linearize RBVMS formulation by Newton’s method.
4. Solve the linear system with the linear solver and proposed preconditioning.
5. Update the solutions for velocity, pressure, temperature, and level set.
6. Update liquid fraction.
7. Update level set field with geometry-based re-initialization.
8. Update level set field with mass-fixing.

3. Numerical examples

We test the proposed approach’s accuracy and modeling capabilities on four different problems. The first
two are representative benchmark problems on level set convection and bubble dynamics, aiming to compare
the performance of geometry-based re-initialization and the PDE-based counterpart. The next are two metal AM
simulations, aiming to assess the prediction accuracy on the key AM quantities by comparing with the experiments
recently conducted by Argonne National Laboratory.

3.1. 3D Zalesak problem

The 3D Zalesak sphere problem is simulated. This is a pure level set convection problem, in which a slotted
sphere with a radius of 0.15 is initialized by level set field at (0.5,0.75,0.5) in a unit cube ([0, 1] × [0, 1] × [0, 1]).
The sphere is convected by the following given velocity

u =
π

314
(0.5 − x2, x1 − 0.5, 0.0) (70)

which rotates the sphere rigidly with angular velocity π
314 and completes one rotation every 628 non-dimensional

time units.
We simulate the problem using both geometry-based and PDE-based re-initialization approaches, with precisely

the same parameters for both. The PDE-based re-initialization is solved with a VMS approach with the generalize-α
method for pseudo-time. The details can be found in our previous work in [43,82]. An unstructured tetrahedral mesh
with uniform element length h =0.01 is used in the simulations. The simulations run for two cycles with ∆t = 0.5.
Fig. 6 shows the sphere shape at every quarter during the two cycles. Although both methods preserve the original
shape of the slotted sphere well, a noticeable improvement can be observed from the geometry-based case, especially
for the second rotation.
14
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Fig. 6. Sphere shape during two cycles.

3.2. Static bubble

We then simulate a static bubble in inviscid liquid without gravity. The exact solutions of this problem are that
velocity is zero and pressure difference across the bubble satisfies the following Young–Laplace equation.

△p = σ
2
R

(71)

here R is the bubble radius.
We simulate the problem in a cubic domain ([−4, 4]× [−4, 4]× [−4, 4]) with unstructured tetrahedral elements.

he bubble center is located at (0,0,0). Surface tension coefficient σ is set to 73. The density ratio is ρl
ρg

= 1000.
No-slip boundary condition is employed for all the surfaces. A refinement study with three element lengths, R

h =5,
10, and 20, is preformed.

We report the simulated results at the 50th-time step. Figs. 7 and 8 show the pressure contour on a plane cut and
along the line from (−4, 0, 0) to (4, 0, 0). Both methods produce an accurate prediction on the pressure difference
and converge to the exact solution as the mesh is refined. Fig. 9 shows the velocity (also called parasite current in
the literature) magnitude on the plane of z = 0. Researchers showed that using the balanced-force CSF model with
hard-coded exact mean curvature reduces the velocity magnitude to zero in machine precision [83–87]. However,
15
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Fig. 7. Pressure contour on three meshes: Geometry-based re-initialization (top). PDE-based re-initialization (bottom). (unit: Pa).

Fig. 8. Pressure along the line from (−4, 0, 0) to (4, 0, 0) on three meshes: Geometry-based re-initialization (left). PDE-based re-initialization
(right). (unit: Pa).

given that it is impossible to obtain analytical mean curvature in real-world problems, we still employ the traditional
CSF model and numerically compute the mean curvature by a L2 projection as mentioned above. This CSF model
results in non-negligible parasite currents in the domain. Nonetheless, the geometry-based re-initialization produces
smaller velocity magnitudes than the PDE-based approach for the three meshes, as seen from Fig. 9.

3.3. Metal AM: Static laser case

For metal AM applications, we first simulate a stationary laser melting problem to demonstrate the modeling
capabilities of phase transition and keyhole evolution. In the simulation, Argon and Ti-6Al-4V are used for the
gas and metal phases, respectively, and their mechanical and thermal properties, extracted from [6,53,61,88,89], are
listed in Table 1. The laser spot size and laser power are 140 µm and Q = 156 W. The simulation is performed on
a cubic domain with unstructured tetrahedral elements. A refined region with element length h = 3.0 µm around
the melt pool is designed to better capture the dynamics. The total number of elements and nodes are 2,466,919
and 428,566, respectively. No-penetration boundary conditions are adopted for all the outer surfaces. Dirichlet
boundary conditions with room temperature are used for all the outer surfaces. The simulation runs for 2 ms with

−7
∆t = 5.0 × 10 s.
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Fig. 9. Velocity magnitude on three meshes: Geometric re-initialization (top). PDE-based re-initialization (bottom). (unit: m/s).

Table 1
Mechanical properties of Ti-6Al-4V.

Name Notation (units) Value

Solid density ρs (kg m−3) 4400
Liquid density ρl (kg m−3) 4400
Gas density ρs (kg m−3) 0.894
Solidus temperature Ts (K) 1878
Liquid temperature Tl (K) 1928
Boiling temperature Tb (K) 3533
Solid specific heat capacity cps (J kg−1 K−1) 670
Liquid specific heat capacity cpl (J kg−1 K−1) 730
Gas specific heat capacity cpg (J kg−1 K−1) 680
Solid solid conductivity κs (W m−1 K−1) 21
Liquid solid conductivity κl (W m−1 K−1) 29
Gas solid conductivity κg (W m−1 K−1) 0.028
Latent heat of fusion Lm (kJ kg−1 K−1) 290
Latent heat of evaporation Lv (kJ kg−1 K−1) 9600
Solid viscosity µs (Pa s) 1.0 × 106

Liquid viscosity µl (Pa s) 5.0 × 10−3

Gas viscosity µl (Pa s) 1.5 × 10−5

Surface tension coefficient σ0 (N m−1) 1.68
Stefan–Boltzmann constant σSB (kg s−3 K−4) 5.67 × 10−8

Marangoni coefficient ∂γ
∂T (N m−1 K−1) −2.6 × 10−4

This problem was experimentally investigated by Argonne National Laboratory using ultrahigh-speed x-ray
maging [90]. Instead of focusing on physics discussions, here we focus on using the available quantitative
xperimental results to validate the simulated results and report the quantities that experiments cannot measure.
ig. 10 shows the time history of melt pool radius and penetrating depth. The melt pool radius is measured by

he averaged distance from the intersection between solid–liquid/gas-metal interfaces to the laser center, while the
enetrating depth is measured by the distance from the deepest point of the melt pool to the still gas–metal interface.
he predicted penetrating depth shows a reasonable agreement with the experimental measurements, especially

or the drilling rate in the keyhole instability stage. The simulation also generates similar keyhole shapes to the
xperimental images on the middle plane, as seen in Fig. 11. However, the fluctuation of penetrating depth predicted
y the simulation is smaller than the experimental results, which may be related to the empirical parameters in the
vaporation model.
17
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Fig. 10. Time history of melt pool depth in the stationary case.

Fig. 11. Comparison of keyhole shapes in the stationary case between experimental images and current simulation. Top: experiment. Bottom:
current simulation.

The following quantities that experiments cannot provide are reported. Fig. 12 depicts the temperature distribution
n the metal phase and velocity vectors in the gas phase at three instances, and the corresponding volumetric
istribution of ray energy (multiplied with density scaled delta function δs) is presented in Fig. 13. The recoil

force Fz is one critical factor controlling keyhole dynamics in metal AM. In the context of interface capturing, Fz

is computed as

Fz = −

∫
ΓI

Precoi dΓ = −

∫
Ω

PrecoiδsdΩ (72)

The time history of Fz in the keyhole instability stage is showed in Fig. 14. The magnitude and fluctuation range

agrees with what was reported in [53]. Mass conversation is critical in multi-phase flows simulations. In this work,
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Fig. 12. Temperature in the metal phase and gas velocity vectors.

Fig. 13. Volumetric ray energy on the melt pool surface.

Fig. 14. Time history of recoil force Fz on the melt pool surface.
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Fig. 15. Time history of relative mass conservation error.

the relative global metal mass error merr is quantified as

merr =
m0 − m t −

∫ T
0

∫
ΓI

medΓdt

m0
(73)

here m0 is the initial metal mass, m t is the metal mass at current time, evaluated as m t =
∫
Ω ρm H (φ)dΩ , the

ast term in the numerator is the accumulated evaporated metal mass up to current time. The time history of merr

s plotted in Fig. 15, which shows the relative metal mass error is maintained at an order of 10−6.

.4. Metal AM: Moving laser case

We further test the proposed methods by simulating a moving laser case with a Ti-6Al-4V bare plate, which
s also experimentally investigated in [90]. The laser spot size is 95 µm, the laser power is Q = 364 W, and the
can speed is Vs = 900 mm/s. The computation is performed in a box with a refined region around the laser track
ith element length h = 3 µm. The mesh has 4,215,023 elements and 612,754 nodes in total. ∆t = 2.5 × 10−7 s.
ig. 16 shows the problem setup and the mesh employed in the simulation. The same types boundary condition as

he stationary laser case are used.
Fig. 17 shows the time history of the melt pool dimensions. The time-averaged experimental melt pool depth [90]

s also plotted for comparison. The relative discrepancy in depth between simulation and experiment is less than
0.3%. Compared with the stationary laser case, the depth fluctuation is smaller. This agrees with the trend in
rgonne National Lab’s latest high-speed imaging experiments [91], which found the relative fluctuation of melt
ool depth decreases with increasing laser scan speed. Although the depth fluctuation is small, the keyhole instability
s still pronounced, resulting in violent free surface deformation, as seen in Fig. 18, which shows the melt pool
hape, temperature field in the metal, and gas velocity vectors. From Fig. 18, we also observe that the heat-induced
as velocity is more turbulent compared with the stationary laser case because of the more significant variation
f interfacial forces induced by the moving laser. In particular, as we show in Fig. 19, the simulation captures the
ommon experimentally observed chevron-type topography, primarily induced by Marangoni force, on the metal top
urface. Fig. 20 shows the comparison of keyhole shapes between experimental images and the current simulated
esults at three time instances. Similar shapes are obtained. The averaged front keyhole wall angle predicted from
he simulation is 69.8◦, compared with 76.0◦ reported from the experiment [90].
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c

Fig. 16. Simulation setup and mesh employed in the moving laser case.

Fig. 17. Time history of melt pool dimensions in the moving laser case. The time averaged melt pool depth from [90] is plotted for
omparison. The relative discrepancy in terms of depth between simulation and experiment is 10.3%.
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Fig. 18. Melt pool shapes, temperature in the metal, and gas velocity vectors in the moving laser case.

Fig. 19. Topography of metal top surface in the moving laser case.
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Fig. 20. Comparison of keyhole shapes between experimental images and current simulation in the moving laser case. The average front
keyhole wall angle predicted from the simulation is 69.8◦, compared with 76.0◦ from the experiment in [90].

Fig. 21. Time history of recoil force Fz in the moving laser case.

Fig. 21 shows the time history of recoil force integrated over the melt pool surface. The averaged magnitude of
Fz is in the same order as that of the stationary case, but with smaller fluctuation, which qualitatively explains the
maller depth fluctuation seen in Fig. 17. The time history of relative mass conservation error is in the same order

s the stationary laser case, as shown in Fig. 22.
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Fig. 22. Relative metal mass conservation error in the moving laser case.

4. Conclusion and future plans

In the present paper, we develop a mixed interface-capturing/interface-tracking computational thermal multi-
phase flow formulation. The development aims to address the limitations of isolated interface-capturing and
interface-tracking methods on metal AM process applications. The mixed formulation takes full advantages of both
interface-capturing and interface-tracking methods to better handle the gas-metal interface, where AM physics, such
as phase transitions and laser-material interactions, mainly occurs. Three major contributions of the paper are:

1. A simple computational geometry-based re-initialization technique, which maintains excellent signed distance
property on unstructured meshes, re-constructs an explicit representation of gas-metal interface, and facilitates
the treatment of the multiple laser reflections during keyhole evolution in AM processes;

2. A fully coupled VMS formulation for thermal multi-phase governing equations, including Navier-Stokes,
level set convection, and thermodynamics with melting, solidification, evaporation, and interfacial force
models;

3. A three-level recursive preconditioning technique to enhance the robustness of linear solvers.

We demonstrate the proposed formulation’s accuracy and modeling capabilities on a set of numerical examples,
including the most recent metal AM experiments performed by Argonne National Lab. The results show the great
potential of the formulation in broad application in advanced manufacturing.

Some parts of the formulation can be polished, which will be addressed in the authors’ subsequent development.
Firstly, we will extend the geometry-based re-initialization to other spatial discretizations, such as non-uniform
rational b-splines (NURBS) in IGA. Secondly, in this paper, a large portion of the mesh is pre-refined along the laser
track, which can be inefficient. To this end, adaptive mesh schemes will be incorporated into the thermal multi-phase
flow formulation. We will also develop efficient computational geometry algorithms to deploy the geometry-based
re-initialization to adaptive meshes.
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