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Abstract
The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough
of metal additive manufacturing (AM) process modeling, which is an indispensable step to derive the process-structure-
property relationship. However, the success of conventional machine learning tools in data science is primarily attributed
to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-
principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the
AM experiments and prohibitive computational cost of high-fidelity simulations, hindering the direct applications of big-data
based ML tools to metal AM problems. To fully exploit the power of machine learning for metal AM while alleviating
the dependence on “big data”, we put forth a physics-informed neural network (PINN) framework that fuses both data and
first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the
learning processes. To the best knowledge of the authors, this is the first application of physics-informed deep learning to three
dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs)
based on a Heaviside function, which can not only exactly enforce the BCs but also accelerate the learning process. The PINN
framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test
series. We carefully assess the performance of the PINNmodel by comparing the predictions with available experimental data
and high-fidelity simulation results, using finite element based variational multi-scale formulation method. The investigations
show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature andmelt pool dynamics
during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the
great potential of physics-informed deep learning for broader applications to advanced manufacturing. All the data-sets and
the PINN code will be made open-sourced in https://yan.cee.illinois.edu/ once the paper is published.
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1 Introduction

It has beenwidely believed thatmetal additivemanufacturing
(AM) can revolutionize mechanical, aerospace, and biomed-
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ical industries owing to its superior capability to print metals
with complex geometries directly from digital models with-
out the design constraints of traditionalmanufacturing routes.
The market of metal AM has been growing significantly for
the past decade. However, compared with the total manu-
facturing market, the industrial adoption of metal AM has
not reached its expected potential due to a lack of reliable
process-structure-property relationships. For the past sev-
eral years, predictive computational models, in conjunction
with in-situ and ex-situ measurements and monitoring [1–
3], have been playing an indispensable role in enhancing the
understanding of the process-structure-property relationship
in metal AM. Federal agencies have also conducted several
benchmark experiments, such as NIST AM-bench [4] and
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AFRL AM modeling challenge series [5], to facilitate the
development of metal AM modeling tools.

Among various computational models at different scales
and fidelity, thermal-fluid process simulation is not only
an essential tool to understand the metal AM physics but
also acts as a spearhead to derive the process-structure-
property relationship. The metal AM process is intrinsically
a multi-scale and multi-physics problem, involving rapid,
complex, and coupled mass/flow/heat exchanges between
gas, liquid, and solid phases, with large density ratios and
complicated interfacial phenomenon.Current numerical sim-
ulation tools often employ mathematical models that couple
Navier-Stokes equations and a heat transfer equation to cap-
ture the evolution of temperature and melt pool dynamics
during manufacturing processes. For decades, the manufac-
turing community has been adopting computational methods
that directly solve these mathematical models or their weak
forms, based on spatial discretization (e.g., finite difference,
finite volume, finite element, and mesh-free methods) and
time-stepping.

The predictive capacities of these approaches have been
significantly enhanced, thanks to the researchers’ persis-
tent efforts in numerical method development from the
manufacturing and computational mechanics/mathematics
communities. For example, Lawrence Livermore National
Lab developed a thermal-fluid solver using the Arbitrary-
Lagrangian Eulerian technique, which can simulate laser
powder bed fusion (LPBF) processes at powder-scale [6–
9]; Knapp et al. [10] and Mukherjee et al. [11,12] developed
a coupled thermal-fluid model to simulate directed energy
deposition (DED) and laser powder bed fusion (LPBF) pro-
cesses. Lin et al. [13,14] developed a control-volume finite
element approach to simulate directed energy deposition pro-
cess. Lattice Boltzmann method has been used to model the
metal powder melting and re-solidification in [15–17]; Zohdi
group employed a discrete particle method to describe the
selective laser sintering process [18–20]; Yan et al. devel-
oped a volume-of-fluid (VoF) based thermal-fluid solver to
model multi-layer and multi-track LPBF process [21–25];
Panwisawas et al. also employed a VoF method by using
OpenFOAM to analyze the inter-layer and inter-track void
formation [26]; Li et al. developed a thermal-fluid model by
combining level set method and Lagrangian particle tracking
to investigate powder-gas interaction inLPBFprocesses [27].
CFD-ACE+, a code developed by ESI group, has been used
to analyze the defects such as porosity, balling, and denuda-
tion in metal AM [28,29]; The last author of this paper [30]
developed a gas–liquid–solid thermal flow model based on
the level set method and residual-based variational multi-
scale method to simulate laser spot melt pool flows. Li. et
al. used a mesh-free model based on material point method
for selective laser beam melting processes [31]. Gan et al.
developed a finite element method (FEM) based thermal-

fluid model and applied it to the NIST AM-Bench problems
[32].

The core of these conventional approaches can be viewed
as the process of using numerical approximations to solve
PDEs without using labeled experimental/computational
data. Despite the continued success and evolution, these
methods require sophisticated mathematical treatments for
spatiotemporal discretizations, coupling strategies, boundary
conditions, and linear solvers to ensure stability, robust-
ness, and efficiency. The application of these approaches to
real additive manufacturing problems is prohibitively expen-
sive and intricate. The high-fidelity simulations are typically
executed in a parallel environment and consume massive
high-performance computing (HPC) hours. Also, the per-
formance of these approaches is often problem-dependent,
necessitating numerical practitioners to have a deep under-
standing of not only the manufacturing problems but also the
underlying mathematical techniques.

Machine learning (ML) and artificial intelligence (AI)
have the potential to accelerate breakthroughs in thermal-
fluid modeling for metal AM processes by harnessing data
from sensors, experiments, and high-fidelity simulations. In
general, ML focuses on algorithmic modeling of data and
making predictions of labels based on observations, with
emphasis on making accurate predictions for classification
and regression tasks. Modern deep learning approaches have
demonstrated tremendous successes in domains ranging from
sentiment analysis to chemical predictions to material design
[33–38]. The first reason for the major success of modern
ML techniques, especially deep learning, is the availability
of vast amounts of data (big-data). The second reason is that
many technical burdens have been mitigated by advances
in both hardware and software, including high-performance
computers, graphics processing units (GPUs), fast large-
scale optimization schemes, new optimality guarantees, and
many user-friendly open-sourced packages, such as Tensor-
flow [39], PyTorch [40], Theano [41], and Caffe [42].

However, using deep learning for AM process modeling
is still challenging. The primary challenge arises from the
lack of large labeled data-sets since either experimental mea-
surements or high-fidelity simulated data of AM processes
are expensive to attain, rendering the big data-based ML/AI
algorithms infeasible. The good news in scientific problems,
however, is that there is highly condensed knowledge and
expertise available in fundamental conservation, evolution,
or constitutive principles, which are often expressed as a set
of partial differential equations (PDEs). One can incorpo-
rate this type of knowledge into ML/AI models to enhance
their predictive capability in sparse data regions. Nowadays,
these approaches are coined as scientific machine learning
(SciML) in the computational mathematics/mechanics com-
munities. In particular, a widely used approach in SciML is
to train a conventional deep learning (DL) model such as
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Gaussian process regression (GPR) [43,44] or deep neural
network (DNN) [45–49] with physical principle constraints.
Existing research has demonstrated SciML’s capability in
sparse-data scenarios for various application areas, such as
environmental study [50,51], material science [52,53], and
cardiovascular modeling [46,54,55].

Although most of the SciML applications are restricted
to single physics systems, we envision the general concept
can be extended to tackle themulti-physics problems inmetal
AM. Thus, this paper put forth a SciML framework for metal
additive manufacturing processes to predict the temperature
field and melt pool fluid dynamics via a physics-informed
neural network (PINN). We aim to fully take advantage of
the prediction capabilities of deep neural networks while sig-
nificantly reducing the amount of costly training labeled data.
To this end, the physical conservation laws of momentum,
mass, and energy are fused into a fully connected neural
network by penalizing the loss function with the residuals
of the Navier-Stokes equations and enthalpy conservation
equation on a set of collocation points. Owed to this addi-
tional knowledge, the learning process only requires a small
amount of labeled data-set. Besides, to impose the neces-
sary Dirichlet boundary condition (BC), we borrow the idea
from the interface-capturing approach widely used in multi-
phase fluid mechanics, in which a small portion of the neural
network is solely used to enforce the Dirichlet BC by a Heav-
iside function. This “hard” approach can not only precisely
satisfy the Dirichlet BC but also speed up the learning pro-
cess, compared with the conventional “soft” approach that
uses additional constraint in the loss function to enforce the
BC. Once themodel is trained, the quantities of interest, such
as temperature, velocity, pressure, andmelt pool dimensions,
can be predicted accurately.

The paper is structured as follows. Section 2 represents
the physics-informed neural network framework, in which
the PDEs of physical principles, design of loss function,
enforcement of Dirichlet BC, and training procedures are
introduced in an articulated way. Section 3 presents the
training data generation by using a FEM based residual-
based variational multi-scale thermal fluid flow formulation.
Section 4 demonstrates the applications of the PINN frame-
work to two representativemanufacturing problems. The first
application is using the PINN framework to solve a clas-
sic solidification problem from the textbook by Dantzig and
Rappaz [56]. For this problem, the PINN is informed by the
energy conservation law and trainedwithout labeled data-set.
We compare the performance of “hard” BC and “soft” BC
on this problem in terms of both accuracy and learning effi-
ciency. The predictive capability of the PINN is assessed by
comparing it with the standard finite element method (FEM)
with resolution refinement studies. The second application is
utilizing the PINN framework to predict the temperature field
and melt pool fluid dynamics for the 2018 NIST AM-Bench

test series. We utilize a validated finite element based vari-
ational multi-scale formulation (VMS) [30] to generate the
synthetic training data-sets. The investigations show that the
PINN, informed by conservation laws of momentum, mass,
and energy, can accurately and efficiently predict the melt
pool dimension, fluid field, and cooling rate for the three
selective laser beammelting tests done by NIST with a small
amount of training data.We summarize the contributions and
limitations of the paper and outline future work in Sect. 5.

2 Machine learningmodel

2.1 Governing partial differential equations

This section presents the governing partial differential equa-
tions (PDEs) of the thermal-fluid flows in metal AM pro-
cesses. The theory of the equations builds upon the tacit
assumptions that the solid phase is a highly viscous fluid
with the same constant density as the liquid phase, and the
loss of metal material due to vaporization [57,58] and the
effects on heat loss, composition change and fluid motion
are negligible. A flat top surface is adopted based on the
fact that the melt pool deformation is small compared with
the melt pool dimensions in the problems considered in the
paper. With the above assumptions, the thermal-fluid model
based on conservation laws of momentum, mass, and energy
is defined as the following coupled PDEs

ρ(u,t + u · ∇u − g) + ∇ p − 2μ�u = 0 (1)

∇ · u = 0 (2)

(ρcpT ),t + u · ∇(ρcpT )

+ (ρL fL),t + u · ∇(ρL fL) − κ∇2T − QT = 0 (3)

Here Eqs. 1 and 2 are the Navier-Stokes equations of incom-
pressible flows, where u is the velocity field, p is the pressure
field, g is the gravitational acceleration vector, ∇ is the gra-
dient operator, � is the Laplace operator, ρ and μ are the
density and dynamic viscosity, respectively.

Equation 3 is the conservation equation of energy, where
T is the temperature, cp is the specific heat capacity, L is the
latent heat of fusion, κ is the thermal conductivity, QT is an
energy source.

To have well-posed systems, Eqs. 1–3 are subjected to the
following Dirichlet and Neumann boundary conditions

u = ubc (4)

p = pbc (5)

T = Tbc (6)

− pn + 2μ∇Su · n = τ (7)

κ∇T · n = q (8)

123



622 Computational Mechanics (2021) 67:619–635

Fig. 1 A fully connected deep
neural network for metal AM

where ubc, pbc and Tbc are the prescribed velocity, pressure,
and temperature on Dirichlet boundaries, respectively. τ and
q are the prescribed traction and heat flux on the Neumann
boundaries, respectively.∇S is a symmetric gradient operator
and n is the unit normal vector on the boundary.

In the model, the solid and liquid phases are distinguished
by a liquid fraction fL , which takes 1 in the liquid phase, 0 in
the solid phase, and a linear profile in the mushy zone [59].
fL is defined as

fL =
⎧
⎨

⎩

0 i f T < Ts
T−Ts
Tl−Ts

i f Ts ≤ T ≤ Tl
1 i f T > Tl

(9)

where Ts and Tl are the solidus and liquidus temperature,
respectively.

With the assistance of fL , the material properties in the
thermal-fluid model are evaluated by the following interpo-
lation

ψ = fLψL + (1 − fL)ψS (10)

where ψ denotes the specific material property in the model
(e.g., density, dynamic viscosity, specific heat capacity, heat
conductivity), andψL andψS are the corresponding property
in the liquid and solid phase, respectively.

2.2 Physical informed neural network (PINN) for
thermal-fluid flows

Neural network is a computing architecture that is vaguely
inspired by the biological neural networks that constitute ani-
mal brains [60]. Some typical neural network architectures
are fully connected neural network (FC-NN) [61], convo-
lutional neural network (CNN) [62], and recurrent neural
network (RNN) [63], which have been successfully used
in a variety of machine learning applications, such as sys-
tem identification and control, signal classification, pattern
recognition, 3D reconstruction, sequence recognition, social
networkfiltering, datamining, andmedical diagnosis [48,64–
67]. In this paper, the PINN of the thermal-fluidmodel makes

use of a fully connected deep neural network (FCNN) [61],
where the neurons of adjacent layers are fully connected.
Figure 1 shows the schematic picture of the fully connected
neural network used in this paper, which consists of an input
layer, hidden layers, and an output layer. A neural network
with more than one hidden layer is conventionally called a
deep neural network, whose function approximation capabil-
ity increases with the number of hidden layers and neurons
[68]. A deep neural network maps the input z0 to the out-
put zNlayer−1 from the input layer to the output layer, where
Nlayer is the number of layers. In the hidden layers, each layer
receives outputs from the previous layer and feeds forward
inputs to the next layer. The relation of between the input
zl−1 and output zl of the lth layer (l = 1, ..., Nlayer − 1) is
defined as

zl = σl(wT
l zl−1 + bl) (11)

wherewl and bl are the weight matrix and bias vector of this
layer. The dimensions of wl and bl are Nl−1 × Nl and Nl ,
respectively, where Nl is the number of neurons in lth layer.
In this paper, we denote the entire hidden parameters of a
neural network as W = ⋃

l wl and b = ⋃
l bl . The dimen-

sions ofW and b are
∑Nlayer−2

l=0 Nl ×Nl+1 and
∑Nlayer−1

l=1 Nl ,
respectively.

σl in Eq. 11 is the activation function that can introduce
the non-linearity to the system [69]. Widely used activation
functions in deep learning are tanh function, rectified lin-
ear unit (Relu) function, and sigmoid function [70]. In this
paper, we employ a swish activation function [71], which is
a smoothed version of Relu function, defined as

σl(x) = swish(x) = x sigmoid(x) = x/(1 − e−x ) (12)

Neural network is a nonlinear parametric function approx-
imator, so all the information of unknown function (velocity,
pressure, and temperature) can be represented by hidden
parameters W and b. The goal of the neural network is to
learn the following mapping for a given set of manufacturing
parameters (e.g,. alloy properties, laser power, and scanning
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speed):

[t, x] W,b−−→ [uNN , pNN , TNN ] (13)

where the input [t, x] are the collocation points (in both space
and time) of interest. The output uNN , pNN , TNN are the
velocity, pressure, and temperature fields we want to pre-
dict. To enable such a mapping, the hidden parameters of
the neural network, W and b, need to be identified by opti-
mizing a meticulously designed loss function, which will be
given in the next section. OnceW, and b are determined, the
output prediction can be easily achieved by a feed-forward
evaluation, which is very efficient since only a few matrix
multiplications are needed in Eq. 11.

2.2.1 Loss function design

The loss function, L(W,b), in the PINN for thermal-
fluid flows consists of two components: Ldata(W,b) and
L pde(W,b), which represents the constraint of matching
existing labeled data and the constraints of satisfying fun-
damental physical principles. Their definitions are given as
follows.

Let û, p̂, and T̂ denote the available labeled data for veloc-
ity, pressure, and temperature, respectively. These labeled
data can be either obtained by experiments or validated high-
fidelity simulations. As a mean squared deviation (MSD)
of the discrepancy between the prediction and labeled data,
the component in the loss function from the data constraint,
Ldata , is defined as

Ldata(W,b) = 1

Nu

Nu∑

i=1

[
uNN (xi , ti ,W,b) − û(xi , ti )

]2

+ 1

Np

Np∑

i=1

[
pNN (xi , ti ,W,b) − p̂(xi , ti )

]2

+ 1

NT

NT∑

i=1

[
TNN (xi , ti ,W,b) − T̂ (xi , ti )

]2

(14)

where Nu , Np, and NT are the number of labeled velocity,
pressure, and temperature data points, respectively. Conven-
tional off-the-shelf machine learning tools purely minimize
this loss function to identify the hidden parameters. The suc-
cess of this approach requires a massive amount of data-sets.
However, considering the cost of experimental measure-
ments and high-fidelity simulations, these labeled velocity,
pressure, and temperature data points are expensive (some-
times impossible) to obtain. This limitation hinders the direct
application of big-data basedmachine learning tools to metal
AM process prediction.

To alleviate the dependence on big-data, we substitute
extra expertise in fundamental physical principles into the
loss function. These physical principles, often expressed as a
set of PDEswith appropriate initial and boundary conditions,
are highly condensed knowledge of fundamental physical
mechanisms that can inform the neural network. For that, we
first define the following residuals of conservation equations
of momentum, mass, and energy (corresponding to Eqs. (1–
3)) as

⎧
⎪⎪⎨

⎪⎪⎩

rM := ρ(u,t + u · ∇u − g) + ∇ p − 2μ�u
rC := ∇ · u
rT := (ρcpT ),t + u · ∇(ρcpT ) + (ρL fL),t

+ u · (ρL∇ fL) − κ∇2T − QT

(15)

To have well-posed systems, appropriate initial and
boundary conditions are often necessary. In this paper, the
initial boundary conditions are treated as part of the labeled
data constraint. For boundary conditions (BCs), many exist-
ing PINN frameworks utilize a “soft” approach by designing
additional loss components defined on the collocation points
of boundaries to constrain the BCs. The downsides of this
approach are two-fold: (1) The accuracy of satisfying the
BCs is not guaranteed ; (2) The assigned weight of BC loss
can affect learning efficiency, and no theory is existed to
guide choosing the weight at this point.

In this paper, we treat the Dirichlet BC in a “hard” way
by using a particular portion of the neural network to purely
satisfy the prescribed Dirichlet BC. For that, we first define
a Heaviside function as

Hε(x) =
{
1 − cos[d(x)π/ε] if d(x) < ε

1 if d(x) ≥ ε
(16)

where d(x) is the distance to theDirichlet boundary. ε defines
a artificial thickness of the boundary. With Hε(x), the pre-
dictions of the neural networks are defined as
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uNN = ubc[1 − Hε(x)] + uHε(x) (17)

pNN = pbc[1 − Hε(x)] + pHε(x) (18)

TNN = Tbc[1 − Hε(x)] + T Hε(x) (19)

where ubc, pbc, and Tbc are the prescribed velocity, pressure,
and temperature. u, p, and T are the solutions that satisfy the
PDEs in the interior. Since Hε(x) smoothly changes from 1
to 0 as d(x) approaches to 0, the predictionwill automatically
satisfy the prescribed values by definition, without needing
additional constraint. Then, the loss term from the PDEswith
embedded Dirichlet BCs is defined as.

L1
pde(W,b) = 1

Nr1

Nr1∑

i=1

rM [uNN (xi , ti ,W,b),

pNN (xi , ti ,W,b), TNN (xi , ti ,W,b))]2

+ 1

Nr1

Nr1∑

i=1

rC [uNN (xi , ti ,W,b),

pNN (xi , ti ,W,b), TNN (xi , ti ,W,b))]2

+ 1

Nr1

Nr1∑

i=1

rT [uNN (xi , ti ,W,b),

pNN (xi , ti ,W,b), TNN (xi , ti ,W,b))]2 (20)

where Nr1 denotes the number of collocation points to con-
strain the PDEs.

In the thermal-fluid flow model for metal AM processes,
Neumann BCs incorporate surface tension for flow field and
laser for thermal field. In this paper, the Neumann BCs are
handled by the conventional way, where the following term
is added in the loss function

L2
pde(W,b) = 1

Nr2
Nr2∑

i=1

{
2μ∇SuNN (xi , ti ,W,b) · n

−pNN (xi , ti ,W,b)n − τ (xi , ti )}2

+ 1

Nr3

Nr3∑

i=1

[κ∇TNN (xi , ti ,W,b)·

n − q(xi , ti )]2 (21)

where Nr2 and Nr3 denote the number of collocation points
on the fluid and temperature Neumann boundaries, respec-
tively.

With above definitions, The hidden parameters W and b
are obtained by minimizing the following total loss function,
which are a linear combination of data constraint of Ldata

and PDE constraints of L1
pde and L2

pde.

min
W,b

L(W,b) = (1 − λ1pde − λ2pde)Ldata(W,b)

+ λ1pdeL
1
pde(W,b) + λ2pdeL

2
pde(W,b) (22)

where λ1pde and λ2pde are two positive numbers between 0 and
1, which define the weight of the physical law constraints in
the loss function. The choice of the weights influences both
the learning process and the prediction accuracy. No univer-
sal guideline exists for choosing the optimal weights at this
point. We select the weights based on the ratios between dif-
ferent components in the loss function in this paper.Wefirstly
estimate the magnitude of the PDE residual loss, boundary
condition loss, and data loss. The ratios of PDE residuals can
be roughly evaluated by the high fidelity simulations that
generate training and validation data-sets (the formulation
will be presented next). Then we specify the λ1pde and λ2pde
so that the ratios of the three components are at the balanced
level.

2.2.2 Learning procedure

The PINN model is trained by minimizing the loss function
defined in Eq. 22 with respect toW and b. The minimization
is executed by the following procedures: (1) The coordinates
of collocation points and training data are substituted into Eq.
22. (2) Take the derivatives of the loss functionwith respect to
W and b. (3) UpdateW and b by a gradient descent. Most of
current machine learning frameworks solve the optimization
problem by a stochastic gradient descent (SGD) algorithm,
which is a stochastic approximation of the gradient descent
optimization [72]. SGD only uses a subset of collocation
points, randomly sampled from the input space at each iter-
ation, to calculate the directional gradient. Research shows
that SGDworks verywell to skip bad localminima.One issue
with SGD is the oscillation of gradient direction caused by
the random selection of sampled collocation points. In this
paper, theAdammethod [73] that combines adaptive learning
rate andmomentummethods is used to improve convergence
speed [73].

The PINN learning process needs the spatial and temporal
derivatives of W and b, which can be accurately and effi-
ciently calculated by using automatic differentiation (AD)
[74]. The basic idea of AD is to use the chain rule to back-
propagate derivatives from the output layer to the input layer
since the connection between layers of a neural network is
analytically defined. Compared to numerical differentiation
techniques (e.g., finite difference and finite element), AD
does not suffer from truncation or round-off errors, resulting
in much higher accuracy. AD has been gaining increasing
attention in the machine learning community and has been
implemented in many modern deep learning frameworks,
such as TensorFlow [39], PyTorch [40], Theano [41], and
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Caffe [42]. In this paper, the PINN formulation is imple-
mented in TensorFlow.

3 Training data generation: high fidelity FEM
simulations

Due to the limited available experimental labeled data-sets,
the high-fidelity thermal-fluid finite element model based on
our previous work in [30] is utilized to generate the labeled
data forAMprocesses.Only a small portion of simulated data
will be used to train the PINN model, and the simulated data
is also used to access themodel’s accuracy. The thermal-fluid
FEMmodel makes use of a residual-based variational multi-
scale formulation (VMS). The core formulation is briefly
presented as follows. LetW denote the testing function space
for the Navier-Stokes and energy conservation equations, V
denote the unknown velocity u, pressure p, and temperature
T fields. The RBVMS formulation of thermal-fluid flows is
stated as: ∀{v, q, η} ∈ W , find {u, p, T } ∈ V , such that
∫

�

v · ρ
(
u,t + u · ∇u − g

)
d� +

∫

�

p∇ · vd�

−
∫

�

v · hd� +
∫

�

∇sv : μ∇sud� +
∫

�

q∇ · ud�

+
∫

�

η
[
(ρcpT ),t + u · ∇(ρcpT )

+ (ρL fL),t + u · ∇(ρL fL)
]
d�

+
∫

�

∇η · κ∇Td� −
∫

�

ηQT d�

+ 

nel
e=1

∫

�e
τM

(

u · ∇v + ∇q

ρ

)

· rMd� + 

nel
e=1

∫

�e
ρτC∇ · vrCd�

− 

nel
e=1

∫

�e
τMv · [rM · ∇u] d�

− 

nel
e=1

∫

�e

∇v
ρ

: (τMrM ⊗ τMrM )d�

+ 

nel
e=1

∫

�e
τT (u · ∇η)rT d� = 0 (23)

where � = ⋃
e �e is the computational domain, which is

decomposed into nel elements. h is the applied traction on
the Neumann boundary �. rM , rC , and rT are the residuals
ofmomentum, continuity, and energy conservation equations
(see Eq. 15). τM , τC , and τT are the corresponding stabiliza-
tion parameters [30], defined as.

τM =
(

4

�t2
+ 4‖u‖2

h2
+ 16ν2

h4

)−1/2

(24)

τC = h2

12τM
(25)

τT =
(

4

�t2
+ 4‖u‖2

h2
+ 16κ2

ρ2c2ph
4

)−1/2

(26)

where �t is the time step, h is the charateristic element
length, and ν is the kinematic viscosity. Other widely used
stabilization parameters can be found in [75,76,76,77,77,78].
The unknown velocity, pressure, and temperature are solved
in a fully coupled fashion. Generalized-α method is used for
time integration. The nonlinear equations are linearized by
Newton’s method. The resulting linear systems are solved by
a generalizedminimal residual method (GMRES)with block
preconditioning [79]. The formulation is implemented for
parallel environments using the Message Passing Interface
(MPI). The formulation has been validated with a series of
metal manufacturing problems in [30]. It worths noting that
the VMS and its extensions on moving fluid domains using
Arbitrary Lagrangian-Eulerian technique (ALE-VMS) [80–
85] and Space-Time (ST-VMS) technique [86–90] have been
used as high-fidelity models to simulate a set of challeng-
ing fluid dynamics and fluid-structure interaction problems
[91]. Several recent applications include environmental flows
[92], wind energy [87,93–102], tidal energy [103–105], bio-
mechanics [106,107,107,108], gas turbine [109–113] and
transportation engineering [114,115].

4 Applications

4.1 Solidification of aluminum in a graphite mold
without labeled data

The solidification process of aluminum in a graphite mold
from the textbook Solidification by Dantzig and Rappaz [56]
is investigated to assess thePINNformulation’s performance.
Only thermodynamics with phase transition is considered
in the simulations here. Figure 2 shows the problem setup,
where the left half of the domain (− 0.4 m ≤ x ≤ 0.0 m) is
occupied by a solid graphite mold with temperature Tlow =
298.15 K, and the right half of the domain (0.0 m < x ≤ 0.4
m) is occupied with liquid aluminum with temperature Thigh
= 973.15 K, which is higher than the melting temperature
of aluminum Tmelt = 933.15K . The solidification process,
depicted in Fig. 2 (lower), occurs by transferring heat from
the aluminum into the mold, and the solid–liquid interface
propagates towards the right end. The material properties of
the graphite mold and aluminum are given in Table 1. The
analytical solutions have beenderived in [56] for this problem
and are specified as follows.

x∗ = 7.095 × 10−3√t m (27)
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Fig. 2 1D solidificaton process from [56]

Table 1 Definition of material properties for the solidification problem

Materials Graphite Aluminum
(solid)

Aluminum
(liquid)

Density (kg/m3) 2200 2555 2555

Specific heat (J/(kg K)) 1700 1190 1190

Thermal conductivity
(W/(kg K))

100 211 91

Latent heat (J/kg) – 398000 –

Tm = 769.95 + 471.8er f

(
96.69x√

t

)

K (28)

Ts = 769.95 + 360.2er f

(
60.02x√

t

)

K (29)

Tl = 973.15 − 111.4er f c

(
91.39x√

t

)

K (30)

where x∗ is the solid–liquid interface location over time, Tm ,
Ts , and Tl are the temperature distribution in the mold, solid
aluminum, and liquid aluminum, respectively.

Despite the simplicity, solving this problemprovides valu-
able insights into the solidification behavior and the machine
learning model’s performance. The PINN model employs
5 hidden layers and 200 neurons of each layer, which pro-
vides better results over others based on our non-exhaustive
investigation. The neural network is only informed with the
energy conservation principle defined in Eq. 3 and trained
without labeled data-set. No data component is not used in
the loss function. The PINN model predicts the temperature
distribution from t = 5 s to t = 10 s.

Figure 3 illustrates the PINN setup and the resulting
temperature prediction in the space-time (x − t) slab for
the solidification process. We compare the performance of
the proposed “hard” approach with the conventional “soft”
approach for the Dirichlet boundary condition in Fig. 4,
which depicts the learning process and temperature predic-
tions at 10 s. The plot shows that the “hard” approach can
not only facilitate the learning process (see Fig. 4 (left)) but
also produce more accurate temperature prediction (see Fig.
4 (right)).

One important question is how the PINN’s predictive
capability compares with traditional numerical methods,
such as the finite element method (FEM). To answer this
question, we simulate this solidification problem by using
PINN with four different numbers of collocation points
and linear FEM with four equivalent resolutions (Nx= 50,
100, 150, and 200 along x direction). Figure 5 shows the
predictions of PINN and FEM for the time history of the
solid–liquid interface position with the four resolutions. The
convergence rate of error of temperature prediction over the
x − t slab is shown in Figure 6. The two plots indicate

Fig. 3 PINN model for the solidification problem. Left: PINN setup. Right: Temperature prediction

123



Computational Mechanics (2021) 67:619–635 627

0 10000 20000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
Tr

ai
ni

ng
 L

os
s

Iteration number

 Hard BC enforcement
 Soft BC enforcement

-0.2 -0.1 0.0 0.1 0.2
200

400

600

800

1000

Te
m

pe
ra

tu
re

 (K
)

x (m)

 Analytic
 Hard BC enforcement
 Soft BC enforcement

Fig. 4 Comparison between “hard” BC and “soft” BC. Left: learning speed. Right: The temperature distribution at 10 s
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Fig. 5 Predicted time history of solid–liquid interface position. Left:
refinement study of FEM. Right: refinement study of PINN

that PINN and FEM obtain similar convergence rates. How-
ever, when the resolution is low, the PINN still attains high
accuracy while a noticeable discrepancy is observed for the
standard FEM.

Fig. 6 L2 norm of prediction error of PINN and FEM with different
resolutions

4.2 NIST AM-bench test series

In this section, we apply the PINN framework to the Additive
Manufacturing Benchmark (AM-Bench) test series con-
ducted by theNational Institute of Standards and Technology
(NIST) [116,117]. In 2018, NIST performed a series of metal
AM experiments with different manufacturing parameters,
which attracted blind simulations to compare with the in-situ
and ex-situ measurements, such as temperature, melt pool
dimensions, and micro-structures [116]. The archived exper-
imental measurements provide valuable benchmark data for
modelers to test the predictive capabilities of simulationmod-
els. In this paper, we use the proposed PINN framework
to predict the temperature, melt pool fluid dynamics, melt
pool dimensions, and cooling rates during the NISTAMpro-
cesses, which corresponds to the first challenge in the NIST
AM-Bench test series [117]. To the authors’ best knowledge,
this is the first application of PINN to three-dimensional
metal AM processes.
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Fig. 7 NIST AM-bench test series

Figure 7 shows a schematic description of the NIST AM-
Bench test, a selective laser beam melting process of a pure
Inconel 625 (IN625) substrate. The material properties used
in this paper are summarized in Table 2. The laser is applied
by imposing the following moving heat flux on the substrate.

κ∇T · n = qlaser = 2Qη

πr2b
exp

(
−2((x − Vst)2 + y2)

r2b

)

(31)

where Q is the laser power, η is the absorptivity, rb is the
laser beam radius, Vs is the laser scanning speed. η = 0.43
and rb = 50 μm are used in this paper. Table 3 lists the
laser power and scanning speed of three cases used in the
NIST experiments. Based on the fact that the top surface
deformation is relatively small compared with the melt pool
dimension, a flat top surface is assumed, and the following
boundary condition is applied for the fluid field.

−pn + 2μ∇su · n = τ = dσ

dT
[∇T − (∇T · n)n] (32)

Table 3 Three laser parameters

Parameters Case A Case B Case C

Laser power 150 W 195 W 195 W

Scan speed 0.4 m/s 0.8 m/s 1.2 m/s

Fig. 8 The mesh employed in the high-fidelity FEM thermal-fluid sim-
ulations

where dσ
dT is the Marangoni coefficient, which is only effec-

tive in the tangential direction of the temperature gradient.
Except for the top surface, no-slip and fixed reference tem-
perature boundary conditions are used for other surfaces.

The PINN model employs a fully connected neural net-
work with 5 hidden layers and 250 neurons per layer. The
model is physically informed by the conservation laws of
momentum, mass, and energy defined in Eqs. 1–3. A total
of 788, 651 collocation points in the x − t slab are used to
penalize the PDE residuals (see Eq. 15) in the loss function.

Due to the limited point-wise measurements provided by
NIST, we use the high-fidelity finite element thermal-fluid
model presented in Sect. 3 to generate the labeled data-sets
to facilitate the training. The FEM simulations use the fol-
lowing boundary conditions. For the fluid field, the no-slip
boundary condition is used for all the surfaces except the
top surface, where no penetration and the traction boundary
condition defined in Eq. 32 is used. For the temperature field,
zero heat flux is used for all the surfaces except the top sur-
face, where heat laser defined in Eq. 31 is used. 4,464,276
linear tetrahedral elements are employed for the computa-

Table 2 Mechanical properties
of IN625

Name Notation (units) Value

Density ρ (kg −3) 8440

Solidus temperature Ts (K) 1563

Liquid temperature Tl (K) 1623

Solid specific heat capacity cps (J kg−1 K−1) 0.2441T + 338.39

Liquid specific heat capacity cpl (J kg−1 K−1) 709.25

Solid solid conductivity κs (W m−1 K−1) 3.0 × 10−5T 2 − 0.0366T + 18.588

Liquid solid conductivity κl (W m−1 K−1) 30.078

Latent heat of fusion cL (KJ kg−1 K−1) 290

Dynamic viscosity μ (Pa s) 7 × 10−3

Marangoni coefficient ∂γ
∂T (N m−1 K−1) −2 × 10−5

Reference temperature Tre f (K) 295
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Fig. 9 Comparison of the predictions of the temperature and melt pool
fluid dynamics of FEM, PINN and experiment for case B (195 W, 0.8
m/s) at quasi-steady state (2ms), when themelt pool shape is not chang-

ing. Left: FEM prediction. Middle: PINN prediction. Right: Thermal
video frame based on radiance temperature from experiment[118]

tions. A local refinement, shown in Fig. 8, is designed to
capture the moving laser. Time step �t = 1× 10−6 s. These
simulations are executed at Stampede2 at Texas Advanced
Computing Center (TACC) with 192 CPU processors. The
simulated results are treated as “ground truth” after being
compared with the NIST experimental measurements. The
FEM simulations have been run up to 2.0 ms for all the three
cases listed in Table 3, but only a small portion of the simu-
lated data between 1.2 and 1.5 ms is used as labeled training
data in the PINN model, which then predicts the manufac-
turing processes for a wider time interval from 0 ms to 2.0
ms.

We first compare the predicted results of FEM and PINN
with available experimental data for case B (195W, 0.8 m/s).
The purpose is two-fold: (1) Ensure the credibility of FEM
data as the training data; (2) Validate the PINNmodel. Figure
9 shows the temperature field, melt pool fluid dynamics, and
melt pool shape at 2.0 ms. The fast-moving laser, along with
the effect of a negative Marangoni coefficient that drives the
liquid metal from the higher temperature region to the lower
temperature region, leading to a long and shallow melt pool.
The predicted temperature profile along the scan track and
experimental measurement extracted from [119] are plotted
in Fig. 10 for comparison. The predicted results by both FEM
and PINN show good agreement with available experimental
data. Figures 9 and 10 also show that the PINNmodel, with a
moderate amount of training data, can generate very similar
predictions of temperature, melt pool length, and melt pool
fluid velocity to those of FEM.

We then apply the PINN model to all the three cases
listed in Table 3. The predicted melt pool shape and the
fluid velocity field within the melt pool are presented in
Fig. 11. The laser results in high velocity in the melt pool,
which reaches up to 1.641 m/s, 1.566 m/s, and 1.446 m/s
for the case A, B, and C, respectively. The predicted melt
pool dimensions compared with the present FEM results, the
thermal-fluid simulation results by Gan et al. [32] that won
an award in the NIST AM-bench competition, and available

-0.0015 -0.0010 -0.0005 0.0000 0.0005
0

200

400

600

800

1000

1200

1400

1600

1800

FEM
PINN
Experiment

Te
m

(K
)

x (m)

Fig. 10 Temperature profile along the scan track for case B (195 W,
0.8 m/s) at quasi-steady state. Experimental data extracted from NIST
AM-Bench test series [119] are also plotted for comparison. (Please note
we cut off the temperature inside the melt pool since the experimental
provides an almost constant temperature.)

NIST experimental measurements are listed in Table 4. For
melt pool length, the relative discrepancy (with respect to
the mean NIST experimental measurements) of PINN, FEM,
and Gan’s predictions are 9.7%, 11.3%, and 17.8% for case
A, 5.1%, 4.7% and 8.1% for case B, and 2.9%, 3.6% and
4.1% for case C. Similar accuracy is observed among these
approaches. Based on the model predictions, we notice that
case A generates the smallest melt pool length but the biggest
width and depth, which could be due to the low scanning
speed that gives the laser more time to melt the underneath
metal. In contrast, case B and C have a slightly bigger laser
power but much faster scanning speeds, which consequently
result in longer melt pool lengths but smaller widths and
depths. Between caseB and caseCwith the same laser power,
lower spanning (case B) speed results in bigger melt pool
dimensions in all directions.

A critical factor in metal AM is the cooling rate, which
profoundly influences dendrite arm spacing, grain structure,
micro-segregation, and hot cracking. In this paper, the cool-
ing rate is calculated as
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Fig. 11 Melt pool shape and the
temperature and melt pool flow
velocity predicted by PINN for
case A, B and C at quasi-steady
state (2 ms)

Table 4 Melt pool dimensions
of case A, B and C

Cases Approaches Length (μm) Width (μm) Depth (μm)

Case A PINN 594.8 (9.7%) 193.3 64.0

FEM 584.4 (11.3%) 190.8 62.8

Gan et al. [32] 542 (17.8%) – –

Experiment [119] 659 ± 21 – –

Case B PINN 740.3 (5.1%) 160.0 52.8

FEM 743.6 (4.7%) 157.5 52.5

Gan et al. [32] 843 (8.1%) – –

Experiment [119] 782 ± 21 – –

Case C PINN 732.5 (2.9%) 131.5 43.2

FEM 727.2 (3.6%) 130.3 42.6

Gan et al. [32] 785 (4.1%) – –

Experiment [119] 754 ± 46 – –

Rc = Ts − 1273.15K

tc
(33)

where tc = (Ds − D1273.15)/Vs , the cooling time interval
determined by dividing the distance between solidus tem-
perature and 1273.15 K by the scanning speed Vs .

Table 5 presents the PINN prediction of cooling rate Rc

for the case A, B, and C. The results of FEM, Gan’s results,
and experimental measurements are also listed for compar-

ison. Both modeling and experiment show that cooling rate
increases from case A to case C. For the cooling rate, the
relative discrepancy (with respect to the mean NIST mea-
surements) of PINN, FEM, and Gan’s predictions are 37.7%,
29.0%and17.6% for caseA, 8.1%, 12.7%and26.3% for case
B, and 7.8%, 7.8% and 11.7% for case C. Although all the
models’ prediction accuracy becomes lower compared with
melt pool dimension prediction,wenotice that theNISTmea-
surements in cooling rates also exhibit significantly higher
fluctuations than melt pool dimension measurements. Nev-
ertheless, if using this discrepancy as an accuracy metric, the
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Table 5 Cooling rates of case A, B and C

Cases Approaches Solid cooling rate (K/s)

Case A PINN 8.54 × 105 (37.7%)

FEM 8.00 × 105 (29.0%)

Gan et al. [32] 5.11 × 105 (17.6%)

Experiment [119] 6.20 × 105 ± 7.99 × 104

Case B PINN 8.59 × 105 (8.1%)

FEM 8.16 × 105 (12.7%)

Gan et al. [32] 6.89 × 105 (26.3%)

Experiment [119] 9.35 × 105 ± 1.43 × 105

Case C PINN 1.38 × 106 (7.8%)

FEM 1.38 × 106 (7.8%)

Gan et al. [32] 11.30 × 105 (11.7%)

Experiment [119] 1.28 × 106 ± 3.94 × 105

proposed PINNmodel only underperforms in caseA and out-
performs in both case B and case C, which is advantageous
compared with the other two high-fidelity FEM simulations
that employ millions of elements.

5 Conclusion

This paper presents the first attempt of using the physics-
informed neural network (PINN) to predict the temperature
and melt pool fluid dynamics in metal AM processes. We
applied the PINN model to two representative metal man-
ufacturing problems. The results show that the PINN can
accurately predict the quantities of interest by only using a
small amount of labeled training data. This paper is also the
first few applications of scientificmachine learning (SciML),
currently confined to single-phase systems, to complexmulti-
scale and multi-physics problems that involve multi-phase
fluid dynamics, heat transfer and phase transition. The two
major technical contributions relevant to metal AM of the
paper are:

– A SciML framework for metal AM processes, which
can accurately predict temperature, pressure, and veloc-
ity field without relying on big-data.

– A “hard” approach for imposing Dirichlet boundary con-
dition, which exactly imposes the prescribed value and
speeds up the learning process.

Although deep learning models cannot replace conven-
tional numerical tools that will continue to be the principal
player, the initial success presented in this paper demon-
strates PINN’s potential on the modeling and prediction of
complicated metal AM processes and paves the way for the
broad adoption in advanced manufacturing.

We also have to admit that this paper does not comprehen-
sively handle the complexity of metal AM processes. To be
precise, the PINN model here does not resolve the ambient
gas phase, free-surface deformation of the melt pool, and the
evaporation phenomenon, although the effects are not cru-
cial for the applications considered in the paper. In terms of
computational efficiency in AM simulations, we didn’t make
a quantitative comparison between FEM and PINN in this
paper because of the different computingmachines: the FEM
was performed in a CPU parallel environment with 192 pro-
cessors at Stampede2, while the PINN was performed using
GPU with only four cores at Frontera. The general observa-
tion is that the more training data is, the more efficient the
PINN is. Under an extreme scenario with no training data,
the PINN, as a PDE solver, is two times slower than FEM
in a sequential computing environment, as tested in the 1D
solidification problem.

In the future, the multi-phase Navier–Stokes will be
enhancedwith the evaporationmodel in themomentumequa-
tions, which was used in our control volume finite element
model [14], to capture the heat loss, composition change, and
fluid motion induced by evaporation. Additional PDEs, such
as convection equation of level set or volume-of-fluid used
in the previous works [23,30], will be incorporated into the
PINN to enable modeling metal AM process at the powder
scale.
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