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Abstract

We develop a parallel finite element computational framework based on the
level set method and adaptive octree meshes for free-surface flows. The dis-
cretized governing formulations are stabilized using a residual-based variational
multiscale method. We redistance the level set field and restore mass conser-
vation after each time step. The octree mesh is adaptively refined according to
the interface location, and the load is rebalanced across processes. The adap-
tive octree-based level set method is verified and validated using a canonical
problem of dam break without obstacle, and a mesh convergence study is carried
out in this problem. The surface tension is further considered via a continuum
surface force model in the method and validated using a problem of single bub-
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ble rising in ambient liquid. A parallel scaling analysis of this method is also
performed for the bubble rising problem. The energy equation and Marangoni
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mocapillary droplet migration with and without gravity. This work illustrates
the ability of the framework to accurately model and predict free-surface flows
under various scenarios.
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1 | INTRODUCTION

Numerical simulations are important tools to study free-surface flow systems in various environmental problems and
industrial applications, such as gas dissolution and transport, water supply, off-shore wind turbines, flood propagation,
etc. One challenge in free-surface flow computation is the treatment of the gas-liquid interface. Two types of methods,
that is, interface-tracking and interface-capturing, are mostly used in free-surface flow computations.' Interface-tracking
methods utilize an explicit deformable mesh to represent the free-surface shape, and the mesh moves with free-surface
deformation. Arbitrary Lagrangian-Eulerian (ALE) methods,® boundary-integral methods* and front-tracking methods®
belong to this category. Interface-tracking method can achieve higher accuracy for resolving the interface compared
with interface-capturing method. Interface-tracking method has shown its capabilities in solving additive manufactur-
ing®’ and off-shore engineering problems. However, it is necessary to use robust mesh motion and re-meshing methods
to manage singular topological changes of the free surface. On the other hand, interface-capturing method leverages
one extra variable to implicitly represent the free surface. Front-capturing method,® phase field,”!* volume of fluid
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(VOF),!! diffuse-interface method'?!* and level set method'*!> belong to this type. Interface-capturing method has
advantages for problems with large interface deformation, because it can automatically deal with topological changes.
Interface-capturing method has been applied to challenging engineering problems in marine engineering,'®!” jet atom-
ization'® and bubble dynamics.'®-! In this paper, we utilize the level set interface-capturing method based on a large-scale
finite element framework for modeling free-surface flows.

Level set method requires a higher mesh resolution near the gas-liquid interface due to the smeared treatment of
the interface. The free surface position changes over time, and therefore it is challenging to use a pre-refined mesh in
free surface simulation. Adaptively refining mesh will not only reduce the computational cost, but also keep the high
accuracy near the gas-liquid interface. In this work, to achieve adaptive mesh refinement, an octree-based spatial dis-
cretization is employed to leverage its data structure for efficiently refining and coarsening elements according to interface
location, and re-distributing elements over processes for load balancing in high performance computing. While the con-
cept of octree-based adaptive space discretization is well studied, integrating level set method on octree-based meshes
on distributed systems for simulating thermal free-surface flows is novel. Octree-based meshing has been successfully
applied to finite element computations for many engineering problems.?”?” In this work, we employ the optimized
parallel octree-based meshing library, DENDRO, which has been deployed for simulating binary black hole inspiral,
four-dimensional space-time tree-based adaptivity, tracking particles in channels using an immersogeometric method,
simulating two-phase flows using energy stable and conservative schemes, and industrial scale large eddy simulations
(LES).?8-32 Detailed features of DENDRO can be found in References 33-37. The original adaptive mesh refinement and sub-
sequent intergrid transfer algorithms in DENDRO is adjusted for tracking the interface in simulating thermal free-surface
flows.

The proposed octree-based level set framework further incorporates a residual-based variational multiscale formu-
lation (RBVMS)?® to solve the coupled Navier-Stokes, level set and energy equations. The RBVMS approach splits the
space into coarse and fine scales using variational projections and focuses on modeling the fine-scale equations. Unlike
traditional scale-split approaches, such as LES, no eddy viscosity models are needed in RBVMS method. Thus it is able
to perform accurate flow condition agnostic simulations. The RBVMS method has been widely extended to various engi-
neering applications involving computational fluid dynamics,***3 and it has also been successively applied to level set
method to model complex multiphase flows.*4

This paper is outlined as follows. Section 2 introduces the governing equations of incompressible free-surface flows.
Section 3 describes the spatial semi-discrete formulations and other necessary numerical treatments. Section 4 briefs the
implementation of adaptively refining the octree meshes based on interface location and subsequent intergrid transfer. In
Section 5, we verify and validate the proposed framework using multiple examples including dam break without obstacle,
single bubble rising in ambient liquid and thermocapillary droplet migration. Finally, we draw conclusions and motivate
future research directions in Section 6.

2 | STRONG FORMULATIONS OF THE CONTINUOUS PROBLEM

We consider a gas-liquid system and describe the governing equations for this multiphase system of fluid mechanics in
the following subsections.

2.1 | Phase separation

We use a level set method to distinguish gas phase and liquid phase. Let Q denote the spatial domain occupied by a
gas-liquid system with its boundary denoted as I'. The level set equation can be written as

¢ ~
= tu-ve=o. @

¢ = ¢ (x,t) is the level set field, where x is an arbitrary point inside €, and u is velocity. The gas-liquid interface I';_; can
be implicitly expressed as

[ ={xeQ| ¢ =0} 2

We prescribe that ¢ takes negative value in the gas phase, while it takes positive value in the liquid phase. A Heaviside
function H(¢) can be then defined as
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1 $>0

H(¢)=10.5 =0 (3)
0 $<0.

A given material property y at an arbitrary point inside the domain can be then computed by the auxiliary of above
defined Heaviside function and can be written as

2 (@) = x; (1 — H(¢)) + yH(P), C))

where y, and y; are the given material properties in the gas and liquid phases, respectively.

2.2 | Navier-Stokes equations

The incompressible flow motion governed by the Navier-Stokes equations may be written as

p(¢)<%—l:+u-Vu>=V-0'+f (5)
V-u=0, (6)

where p is the density, which is a function of ¢. fis the forcing term, and o is the Cauchy stress, defined as

o(u,p) = —pI+2ue @)

ew) == (Vu+vu'), (8)

1
2
where p is the pressure, y is the dynamic viscosity, € is the strain-rate tensor, and I is the identity matrix.

The forcing term f'is the union of body force f; and gas-liquid interfacial force f,_;, defined as f=f, + f,_,. In this
work, we consider f, only includes the gravity, written as f, (¢) = p(¢)g, where g is the gravity acceleration. We consider
Sy includes surface tension and Marangoni stress, which may be written as

f:g_l (T) = osxsn5 + % (VT = (VT - ng)ny), (9)

. . - . do, - .
where oy is the surface tension coefficient, x; is the mean curvature, defined as x; = —V - nq, diTS is the Marangoni

coefficient, n, is unit normal vector to the interface, and T is temperature. We will discuss fg_l more in the Section 3.4.

2.3 | Energy equation
The energy equation can be written as
oT
p@ep() (S +u-VT) = V- (k@) V). (10)
where ¢, is the specific heat and « is the thermal conductivity.

The formulations (1)-(10) are accompanied with specific boundary conditions, defined on I = ' U T'N with Dirichlet
boundary I'® = ') UT> and Neumann boundary I'N = I’ T

u=uy onIY , (11)

T=Tq onTD, (12)
—-pn+2ue-n=h, on I}, (13)
xVT-n=hr on I}, (14)

where u, and T, denote the prescribed velocity and temperature at the Dirichlet boundaries I'} and F?, respectively, hy,
and hr are the traction vector and heat flux at the Neumann boundaries I'} and Fl}l, respectively, and n is the unit normal
vector to the boundary.
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3 | DISCRETIZED WEAK FORMULATIONS
3.1 | RBVMS semi-discrete formulations
Let W" and V" be the finite-dimensional spaces of discrete test functions and trial solutions, which are denoted as super-
script h, and represent resolved scales (coarse scale) produced by the finite element discretization. Following the devel-
opment from Yan et al.,*® the strong problem (1)-(14) can be recast in a weak form and posed over these discrete spaces
to produce the following spatial semi-discrete problem using the VMS modeling approach: find {u", p", ¢", T"} € V",
such that V{w", ¢", y" y"} € Wh,
BVMS ({Wh, qh, nh’ l//h}, {uh’ph, ¢h’ Th}) _ FVMS ({Wh, qh’ 7’]h, ll/h}, {uh’ph’ d)h’ Th}) =0, (15)
where the bilinear form BY™® and forcing term F'™® are given as
BVMS ({wh qh I’]h Wh}a {uh7ph’ d)h’ Th})
/w p<—+u -Vu ) dQ+/th : o-(uh,ph) dQ
Q
/ q'V - u"dQ
Q
ag" h
+ [ 7 +u" - Vol ) dQ
o ot

h
+/u/”pcp <ai+u’“-VTh> dQ+/Vy/ -k VThdQ

ot
nel nel
—Z/ pu - VW' + Vq") -u' dQ - Z/V - whp'dQ
nel nel
+2/ o' - (W - Vu") dQ - 2/ PV (W @u')dQ
e=1 =1 J Q,
nel
- / u' - V¢ dQ
e=1 7 Q,
nel
—2 pCou - Vy"T'dQ, (16)
=1 Qc
and
F™S ((wh, g" " w"), (u", p", ", T"}) (17)
=/wh fdQ+ [ wh-h, dF+/ w'hy dr, (18)
Q ™ ™

where the variables with superscript primes denote the unsolved scales (fine scale) that need to be modeled and added
onto the coarse scale. The fine scale variables are defined proportional to coarse scale residuals as

h
w=-M (p <ai+uh-Vuh> - V.o, p" —f>, (19)
p ot
p’ = —Tch . uh (20)
d)h
¢ = -1, < +u" v¢h> (21)
oT"
T =—"L (pc, (L= 4u - VT") = V.xVT" - 0Q, ), 22
(v (5 +u VT -0, ()
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where 7y, 7¢, 74, and 7r are stabilization parameters given as

2 2
4 h h M
= —+u'"-Gu'+Cyl—-) G: G . 23
™ (At2 M<p> ) ( )
1
= — 24
= Gy (24)
1
4 h h)‘z
=l—+u"-Gu . 25
o (At2 (25)
4 K 2 _é
h h .
= —+u"-Gu"+Cr| — ) G: G . 26
T <At2 T<pcp> > ( )

In above equations, At is the time-step size, which can be chosen following the CFL condition. Cy; and Cr are positive
constants which can be derived from element-wise inverse estimates. G is a mesh-dependent quantity calculated by the
mapping from the isoparametric counterpart (&) to the physical element (x)

3

Gy= 3 2%k 7)

and tr G is the trace of G. Equations (15)-(27) feature the VMS formulations of level set equation, Navier-Stokes equations
and energy equation of incompressible thermal multiphase flows.
3.2 | Regularization and redistancing of level set field

The sharp gas-liquid interface is regularized in the spatial discretization in order to perform finite element computation
using interface-capturing methods. A regularized Heaviside function H, in lieu of Equation (3) is defined as

1 $>¢€
H, () = O.S(l+§+isin(‘%”)> —e<¢p<e (28)
0 ¢d < —€.

where ¢ determines the thickness of the regularized interface, which is usually chosen as the same order of the ele-
ment size across interface. In order to construct a smooth, well-structured interface, the level set field is initially adjusted
to have the signed-distance property. However, the signed-distance property may be unavoidably destroyed as level
set field purely evolves with velocity during time stepping, resulting in a distorted interface. As a result, a redistanc-
ing of level set field is required to restore the signed-distance property to retain a well-structured interface during the
computation.

We redistance the level set field after each time step to obtain a new level set field ¢,4 that satisfies the signed-distance
property by solving

a¢rd
Otyq

+5gn (@) (V| —1) =0 in Q, (29)

where sgn (-) is the sign function and | - | denotes the Euclidean norm, with the constraint of
¢ra=¢=0 on I—‘g—l’ (30)

to ensure the correct position of the gas-liquid interface during time stepping. The steady state solution of Equations (29)
and (30) can be evolved from an initial condition ¢.4(x, 0) = ¢(x) over pseudo time t,4, and possesses the signed-distance
property, that is, satisfies the Eikonal equation®® |V¢,4| = 1in Q ". Providing the solution of ¢ after solving the level set
equation, Equations (29) and (30) can be recast in a semi-discrete weak form (using VMS) and posed over the discrete
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spaces: Find ¢" € V", such that V4", € W",

h ad)h
[ (524 5 (0l) (1901 -1) ) a2
Q rd
nel Vd)h
_Z/ WThd'and g dQ

nel
v 3 [t (- ) =0 o

where S, (¢") = 2H, (¢",) — 1, 4 is the penalty parameter to enforce the constraint of ¢ = ¢" inside the regularized
interface, and 4): d is the fine scale ¢,4 and can be written as

/ a¢h
g = —Tnd T + S () (VL —1) | dQ, (32)
and
h h
4 V('b h V('brd
ta = —5 +Su (dry) -G | S () : (33)
<Afm Ve “ v,
Srd (d) ) IZ Y can be interpreted as an effective convective velocity ™ . The size of the pseudo time step At,4 may be chosen

from an effectlve CFL condition of Equation (31).

3.3 | Mass fixing

Level set method as well as redistancing may fail to observe mass conservation. In order to conserve mass, a global
mass restoration method is employed via shifting the level set field by a global constant A¢" after the redistanc-
ing, which therefore does not alter the signed-distance property obtained from re-distancing. The A¢" can be solved

from
oH, ("
/Md9=—/< Pe +Hr(¢h)>uh~ndl", (34)
Q ot r \PL—Pg

which is derived from the mass conservation law. Note, since A¢" is a global constant, a scalar nonlinear equation needs

~ n
to be solved. In the temporal discrete form, (H,)" at current time step n can be evaluated by (q&f d) " (Ad)h) when using
~ n
an iterative nonlinear solver, where (Ad)h) is the solution of (Aqﬁh )" from the last nonlinear iteration in this time step.

The final (¢")" of current time step is updated by (oh, )" + (Ag")" after solving (A:l)h> until convergence. —— - may be
=

omitted since liquid density is much bigger than gas density.

3.4 | Gas-liquid interfacial forces

In this work, we consider the continuum surface force (CSF) model to convert the interfacial force fg_l(T) from a sur-
face force into a continuous volume force for the regularized interface, and Equation (9) is rewritten in the discrete
form as

f;_l(th,T") = <0'SKSnS "; (VT" - (VT" - ny) ns)> S, (35)
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h
where unit normal vector n, is now defined as ny = —% at arbitrary point inside the regularized interface, and mean
. . 2 (W(ph)) (Vo) W(g Vet . . . . .
curvature k; is defined as x; = Vg Pur(¥ (o )I)V¢(hTS¢ ) (Ve . ¥ is the Hessian matrix with second derivatives, which can
be evaluated by an L, projection when using linear basis function. §, is a density-scaled Dirac delta function for the
h
regularized interface, defined as 6, = 29" d—H;.
pgtp de
3.5 | Temporal discretization and solving strategies

We employ a fully implicit backward Euler scheme based on finite difference for the discretization of the governing
equations (as well as the pseudo time-dependent Eikonal equation) in time. We employ the Newton-Raphson method to
solve the nonlinear governing equations. For the thermal multiphase system, a block-iterative strategy*® is employed to
form three individual systems, one for the Navier-Stokes equations, one for the level set equation, and one for the energy
equation, and solve them self-consistently * until convergence of the whole set of governing equations in each time step.
We couple our framework with an open-source package PETSc,”! to employ its scalable nonlinear equation solvers as
well as its linear Krylov subspace solvers.

4 | OCTREE-BASED MESH AND ADAPTIVE MESH REFINEMENT

The computational cost with fixed prerefined mesh is enormous because the position of the interface is constantly chang-
ing over time. As a result, in this work, we propose an octree mesh-based level set method that extends the level set method
on an octree-based background mesh to achieve efficient adaptive mesh refinement following interface evolution, and
therefore reduce the total computational effort.

4.1 | Octree mesh implementation

We employ the optimized parallel octree-based meshing library, DENDRO, which provides the adaptive mesh refinement
and all parallel data-structures. The process in DENDRO used to build and maintain an adaptively refined octree mesh in
parallel mainly includes following four parts:

« Refinement proceeding in a top-down fashion based on specific refining instructions. In this work, the interface with
a finite thickness and near region are refined.

« 2:1balancing which enforces that two neighboring octants differ in size by at most a factor of two. This allows a smooth
transition in mesh density and makes subsequent operations simpler while retaining required adaptive properties.

« Partition based on a weighted space-filling-curve. Elements are equally partitioned by point-to-point communication
to redistribute the elements across processes according to the number of elements in each process.

« Meshing that constructs the finite element computation data structures from the octree data structures. This also
includes handling overlapping process boundary parts (shared nodes between neighboring processes).

The algorithms of above processes in DENDRO are detailed in Reference 34. We also refer readers to Refer-
ences 33,52-55 for details on implementation of DENDRO.

4.2 | Refinement according to interface location

To adapt the mesh refinement to resolve the large gradient inside the interface with a finite thickness, a uniform coarse
mesh is first constructed. Proceeding in a top-down fashion, each cell in the mesh is refined if the interface covers,or
partially covers it, which is determined using the level set field with the signed-distance property. If all eight corners
of an octant are outside of the interface, that is, all corners have ¢ > ¢ or ¢ < —¢, then we do not refine further. If all
eight points are inside the interface, or at least one point is inside, that is, at least one corner have —e < ¢ < ¢, then this
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octant is refined. This process is repeated until the desired level of refinement is achieved. Since considerable physics also
takes place around gas-liquid interface, we extend the refinement to cover the near-interface region, that is, amplify the
magnitude of e during refinement. Note, The most refined (maximum refinement) region and most unrefined (minimum
refinement) region will have a buffer region (intermediate refinement) between them, as seen in Figures 4, 6, 8A, due to
the 2:1 balancing enforcement.

4.3 | Adaptive remeshing and intergrid transfers

Since we adaptively refine the mesh as the interface evolves, this indicates that we rebuild the octree hierarchy at each time
step based on the current position of the interface using results of the level set field after redistancing. Note, rebuilding
the octree also allows to coarsen a previously refined parent element, that is, merge children octants into a parent octant,
once the interface moves away from the space. The reconstruction of octree structure is also followed by the procedures of
2:1 balancing, partition (to rebalance the load), and meshing as discussed in Section 4.1. Once the new mesh is adaptively
constructed, we interpolate the data from the old mesh to the new mesh. Note when using the octree data-structure to
regenerate new mesh, the intergrid transfer between old and new meshes only happens between parent and child (for
refinement), or stays the same (for coarsening and unchanged elements), this can be first performed locally on the old
mesh using standard linear interpolation, then followed by a repartitioning of the new mesh and interpolated data based
on the new octree.

5 | RESULTS AND DISCUSSION
5.1 | Dam break without obstacles

We first simulate a three-dimensional (3D) dam break without obstacle in a unit cube to verify and validate the
octree-based level set framework. A water column is restricted at the lower left wall with a height of hp = 0.5 m and a
width of wy = 0.25 m. The densities of water and air are set to be 1000 and 1.2 kg/m3, and the dynamic viscosities are set
tobe 1 x 1073 and 1.8 x 10~°kg/(m - s), respectively. Gravity acceleration is g = 9.81 m/s?. Time step is set tobe 1 x 1073 s.
Note, there is no interfacial force considered in this case.

We first perform a mesh convergence study for the dam break problem. We choose three sets of meshes with a maxi-
mum refinement around the interface and a minimum refinement away from the interface. The min/max is set to be 3/5,
3/6, 4/7, resulting in initial number of total elements to be 7232, 30,976, and 116,992. An initial mesh (min/max refine-
ment is 4/7) with local refinement around the interface is shown in Figure 1. Note, the total number of elements will vary

FIGURE 1 [Initial mesh with local refinement around the interface for the dam break problem
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FIGURE 2 Convergence results of leading edge and water height versus time for the dam break problem. Leading edge and height are
normalized by wy and hy, respectively, and time is normalized by 1/4/2g/wy. (A) Leading edge and (B) water height

as the interface involves. The mesh convergence results of the water leading edge and height normalized by wy and h,,
respectively, as a function of time are shown in Figure 2.

We also compare the leading edge and water column height during evolution with some other experimental and
numerical results®*> as shown in Figure 3. It can be seen that our results match the results from other references very
well. We finally show the interface locations projected to the middle plane of the domain at four different time steps with
adaptive mesh refinement around the interface in Figure 4.

5.2 | Single bubble rising

In this section, we simulate a single bubble rising in a quiescent liquid within a confined domain. Surface tension is
considered as interfacial force in this case. We employ a cubic domain with dimension of 0.2m x 0.2m X 0.2 m. The
spherical bubble is initially placed in the center of the domain with a diameter of D = 0.01873 m. The liquid and bubble
densities are p; = 1000 kg/m? and p, = 1 kg/m?, resulting in a density ratio of 1000. The liquid and bubble viscosities
are yy = 0.527 kg/(m - s) and p; = 0.00527 kg/(m - s), resulting in a viscosity ratio of 100. The surface tension coefficient

is o5 = 0.0141 N/m. These physical parameters indicate two dimensionless parameters, Archimedes number, defined as

pngZ . pfgl /2p3/2 . . .
= tobe Ar = 15.2, and Bond number, defined as ~———, to be Bo = 244. Time step is chosen to be 2.5 X 107 s.

I
Os Hy

4 i 1 i
O Martin and Moyce O Martin and Moyce
[0 Koshizuka et al - = =Moon et al.
3.5 | |—-—-_Moon ef al. 09 NG |- Moon et al. Flow-3D| |
Moon et al. Flow-3D| =2/ 2 L R e Greaves
Greaves Present
% 3t Present 0.8
° —
(0] <
2.5 207
c (4]
k=] T
3 2f 0.6
-
15 05 ]
10 0.4
0 1 2 3 0 1 2 3
Time Time
(A) Leading edge (B) Water height

FIGURE 3 Comparison of leading edge and water height versus time for the dam break problem. Leading edge and height are
normalized by wy and hy, respectively, and time is normalized by 1/4/2g/wy. (A) Leading edge and (B) water height
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FIGURE 4 Interface on the center slice with adaptive mesh refinement at four different time steps for the dam break problem. Time is
normalized by 1/4/2g/wy. (A)t=0;(B) t =1.02; (C) t =1.91; (D) t = 2.75

Two mesh densities with min/max refinements to be 5/8 and 5/9 are employed in this case, resulting in initial numbers
of total elements to be 78,800 and 264,216. The dimensionless bubble rising velocity as a function of dimensionless time
and terminal 3D bubble shape are plotted in Figure 5. It shows the two mesh densities produce similar results for the

bubble motion and final shape, and similar bubble shapes can also be seen in References 60 (case A4), 13 (case D) and 61
prDug,

(case A3). We compare the terminal Reynolds number, defined as Re = , where u,, is the bubble terminal velocity,

of these two mesh densities with other numerical and experimental results gs shown in Table 1. It can be seen our results
match the results from other references very well. In addition, the bubble shape projected to the middle plane of the
domain at different time frames with adaptive mesh refinement around the interface is plotted for the mesh with min/max
refinement of 5/9 in Figure 6.

For this example, we also show the scaling performance of the framework. We run the example with a min/max
refinement level to be 7/10, and adjust the size of refinement region making the total number of degrees of free-
dom reach 43.2 million. We collect solve time for five time steps and take the average to obtain timing for one
time step. The scaling test was performed on Stampede2, Texas Advanced Computer Center (TACC), using KNL
compute nodes. We plot the performance for the example with different numbers of processes, in the style of
a strong scaling for the solve time of one time step, as shown in Figure 7 (axes are plotted in log scale with
base 2). Overall, the framework presents a good scalability with continued reductions in solve time up to 16,384
processes.
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FIGURE 5 (A)Dimensionless rising velocity v.s. time for the bubble rising problem. Velocity is normalized by /gD, and time is
normalized by 1/D/g. (B) Terminal three-dimensional bubble shape for min/max mesh refinement: (upper) 5/8, and (lower) 5/9. (A) Bubble
motion; (B) Bubble shape

TABLE 1 Comparison of terminal Reynolds number for the bubble rising problem
This work (min/max refinement) References

7.99 (5/8), 8.35 (5/9) 8.40,% 7.60°!

5.3 | Thermocapillary droplet migration
5.3.1 | Without gravity

In this section, we simulate a thermocapillary droplet migration in an ambient liquid with a linear initial tempera-
ture profile. We employ a cubic domain with dimension of 0.03 m X 0.03 m X 0.03 m, which is large enough to eliminate
boundary effect according to Reference 62. The droplet is initially placed in the center of the domain with a radius of
R=144x10"% m. The liquid density, viscosity, specific heat, and thermal conductivity are p; = 500 kg/m?,
ur =0.024 kg/(m - s), cpr = 10~* and ky = 2.4 x 10~® W/(m - K). The ratios of the material properties between the droplet
and ambient liquid is chosen to be 0.5. The surface tension coefficient is o5 = 0.01 N/m, and Marangoni coefficient

O,

is 9% = 2% 1073 N/(m - K). These physical parameters indicate three dimensionless parameters, the Reynolds num-

dar
prRu
ber, defined as Re = “—

o to be 0.72, where u, is the reference velocity, defined as u, = %lVTlR/ s, the Marangoni
f

pecpeRU
number, defined as Ma = Z&™
K,

, to be 0.72, and the Capillary number, defined as Ca = % to be 0.0576. Initial tem-

perature is specified as a highftemperature of 276 K at the top wall, a low temperature of 27OS K at the bottom wall, and a
linear temperature distribution along the vertical direction in the interior of the domain, resulting in a constant temper-
ature gradient of 200 K/m along the vertical direction. No slip boundary condition and fixed temperature at horizontal
walls are specified. Note, gravity is not considered while surface tension and Marangoni effect as interfacial force are con-
sidered in this case. Since gravity is ignored, surface tension in the normal direction of the droplet surface will keep the
droplet shape unchanged. The Marangoni stress in the tangential direction of the droplet surface will drive the droplet to
move along the vertical direction (i.e., the direction of temperature gradient). Time step is chosen to be 1073 s.

We employ a mesh with min/max refinement to be 5/8, and show the local refinement around the interface projected
in the middle plane of the domain as seen in Figure 8A. Velocity vectors with temperature contour lines are plotted in
Figure 8C. Recirculation vortex can be observed in both sides inside the droplet, and similar flow pattern is also exhib-
ited in other references.*®%? We finally plot the dimensionless migration velocity as a function of dimensionless time in
Figure 8B, and compare with other numerical and analytical results.*3%263 A good agreement is presented between our
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FIGURE 6 Bubble shape on the center slice with adaptive mesh refinement at five different time steps for the bubble rising problem.
Time is normalized by 1/D/g . (A) t = 1.03; (B) t = 2.06; (C) t = 3.09; (D) t = 4.12; (E) t = 5.15

Time (s)
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FIGURE 7 Strong scaling of averaged one time step solve time for the bubble rising problem with 43.2 million degrees of freedom with
number of processes up to 16,384 on Stampede?2.

results and results from other numerical approaches, while a discrepancy between Young et al.’s®® analytical result and
all other numerical results is notable, for which we speculate is due to the assumptions of infinite domain and Stokes flow
in the analytical result.

5.3.2 | With gravity

In this section, the gravity for the problem of thermocapillary droplet migration is considered. Similar dimensionless
scaling is employed as the previous section, and some resulting dimensionless parameters are Re = 8, Ma = 56, and
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FIGURE 8 (A)Local mesh refinement around the interface for the problem of thermocapillary droplet migration without gravity.
(B) Dimensionless migration velocity versus time and comparison with other approaches. Velocity is normalized by u,, and time is
normalized by R/u,. (C) Velocity vectors with temperature contour lines. (A) Mesh refinement; (B) droplet motion; (C) flow visualization

2
Ca = 0.032. Besides, Froude number and Prandtl number are introduced, and defined as Fr = g—é tobe 6.4, and Pr = ‘:—f to
4

be 7, respectively, where vy is kinetic viscosity and a5 = % is the thermal diffusivity. Another two temperature-related
ther)

parameters are also defined, that is, dimensionless temperature gradient f = %Tref to be 0.1, and dimensionless

Marangoni coefficient M = %Tref/ o5 to be 0.32, where Ty is the reference temperature. A positive M indicates that the
Marangoni stress acts on the droplet surface along with the same direction of the buoyancy. Note, above definitions pro-

duce Ca = M and Ma = RePr.In addition, the relative density, viscosity, and diffusivity of the two materials are % =1073,
f

% =1072, and Z—g = 4 x 1072. The rest of computational setup is similar as the previous section.

' Figure 9 shoevs the isotherms and the shapes of the droplet in the vertical median plane at different time steps, and
Figure 10A exhibits the variation of vertical coordinate of the droplet center along with time. In contrast to the previous
case without buoyancy, where the droplet shape is kept spherical due to surface tension, in this case the droplet eventually
deforms to an oblate shape. Similar behavior of the droplet under gravity can also be found in Reference 64. Figure 10B
quantitatively demonstrates the shape of droplet at dimensionless time ¢ = 10, and plots the distance of the points on
the droplet surface in the vertical median plane to the droplet center. The radian in Figure 10B starts from the point
with minimum horizontal coordinate and moves clockwise. Since buoyancy is considered, the resulting effect of inertial
force dominates the flow as opposed to the previous case, and overshadows the surface tension, which alters the droplet

shape.
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(A)t=1 7(D)t=10

FIGURE 9 Isotherms and shapes of the droplet in the vertical median plane at different time steps for the problem of thermocapillary
droplet migration with gravity. (A)t=1(B)t=4(C)t=7(D)t=10
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FIGURE 10 (A) Variation of vertical coordinate of the droplet center v.s. time for the problem of thermocapillary droplet migration
with gravity. (B) Distance of the points on the droplet surface in the vertical median plane to the droplet center.

6 | CONCLUSIONS AND FUTURE WORK

We develop a parallel finite element computational framework based on level set method on adaptive octree meshes for
thermal free surface flows. The sharp gas-liquid interface is regularized in the spacial discretization, and redistancing of
the level set field and restoration of mass conservation after each time step are performed in the framework. Interfacial
forces are considered via a CSF model. The octree mesh is adaptively refined according to the interface location, and the
load is rebalanced across processes followed by interpolation between meshes. The discretized governing equations are
stabilized using a residual-based VMS method. The adaptive octree-based level set framework is verified and validated
using multiple canonical problems including dam break without obstacle, single bubble rising in ambient liquid and
thermocapillary droplet migration with and without gravity. We also present the parallel scaling performance for the
bubble rising problem to illustrate the good scalability of the method. The results in this paper have demonstrated the
robustness and accuracy of our framework in simulating free-surface flows under various physics scenarios. We anticipate
to further consider phase change into this framework and deploy it to additive manufacturing in the future.
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ENDNOTES

*Equation (29) can be essentially interpreted as a pseudo time-dependent Eikonal equation.

t ot Ti : : ho 99 h\ Vb ggh _ h
The first line of Equation (31) can be rewritten as fg Ny < az,: + Srq ( rd) \W’:ZI V¢, — S (q,’)rd) dQ.

#When solving variables for one system, treat the variables from the other two systems constant with their most recently updated values.
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