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Abstract
We present a new computational framework to simulate the multi-phase convective conjugate heat transfer (CHT) problems
emanating from realistic manufacturing processes. The paper aims to address the challenges of boundary-fitted and immersed
boundary approaches, which cannot simultaneously achieve fluid-solid interface accuracy and geometry-flexibility in sim-
ulating this class of multi-physics systems. The method development is built on a stabilized Arbitrary Lagrangian-Eulerian
(ALE)-based finite element thermal multi-phase formulation, which is discretized by overlapping one boundary-fitted mesh
and non-boundary-fitted mesh with a quasi-direct coupling approach via Schwarz alternating method. The framework uti-
lizes a volume-of-fluid (VoF)-based multi-phase flow model coupled with a thermodynamics model with phase transitions
to capture the conjugate heat transfer between the solid and multi-phase flows and the multi-stage boiling and condensation
phenomena. The quasi-direct coupling approach allows the exact and automatic enforcement of temperature and heat-flux
compatibility at the fluid-solid interface with large property discontinuities. From the perspective of method development, the
proposed framework fully exploits boundary-fitted approach’s strength in resolving fluid-solid interface and boundary layers
and immersed boundary approach’s geometry flexibility in handling moving objects while circumventing each individual’s
limitations. From the perspective of industry applications, such as water quenching processes, the resulting model can enable
accurate temperature prediction directly from process parameters without invoking the conventional empirical heat transfer
coefficient (HTC)-based approach that requires intensive calibration. We present the mathematical formulation and numerical
implementation in detail and demonstrate the claimed features of the proposed framework through a set of benchmark prob-
lems and real-world water quenching processes. The accuracy of the proposed framework is carefully assessed by comparing
the prediction with other computational results and experimental measurements.

Keywords Advanced manufacturing · Computational fluid dynamics · Overlapping meshes · Finite element method

1 Introduction

The term “conjugate heat transfer (CHT)” [1] describes a
coupled solid-fluid thermal system, where the heat transfer
in the solid is heavily influenced by the surrounding fluid.
Typically, heat conduction dominates in the solid domain,
and convection dominates in the fluid domain. Convective
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CHT systems are a unique type of multi-physics system. It
possesses the features of both bulk-coupled multi-physics
systems: the coupling of physical components occurs at every
spatial point of the problem domain through source terms
or constitutive relations (e.g., radiation hydrodynamics), and
interface-coupled multi-physics systems: the physics cou-
pling occurs through an idealized interface or a narrow buffer
zone through boundary conditions (e.g., fluid-structure inter-
action). More specifically, in convective CHT problems, the
flow and temperature fields are coupled both in the fluid
domain and through the fluid-solid interface, where the no-
slip flow boundary condition, temperature, and heat flux
compatibility need to be satisfied simultaneously. Convec-
tive conjugate heat transfer exists in a wide range of heat
treatment and composite manufacturing processes that are
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used by industry to obtain specific mechanical properties of
metallic and composite structures. One representative exam-
ple is the water quenching process [2]. In water quenching,
rapid and non-uniform cooling processes can generate unde-
sired residual stress and distortion, which are detrimental to
the structure functionality and even cause structural failure.
Predicting the spatiotemporal temperature field to assess the
resulting residual stress and distortion of quenched parts has
been one of the most critical research areas in heat treat-
ment processes. However, this task is challenging due to the
multi-scale andmulti-physics process that includes the strong
coupling of thermal, flow, and mechanical interactions [3].
The convective CHT problems arising from real-world heat
treatment/manufacturing processes of large-scale compo-
nents impose grand challenges on computational mechanics.
The main challenge stems from the fluid-solid interface with
complex geometry and large property ratios, leading to sev-
eral critical issues pertinent to mesh flexibility, enforcing
boundary conditions, and resolving boundary layers.

In computational fluiddynamics (CFD) andfluid-structure
interaction (FSI), there are two types ofmethods for handling
fluid-solid interface: boundary-fitted and immersed bound-
ary methods. Each method has its strength and weakness.
On the one hand, boundary-fittedmethod [4–7] is more accu-
rate than immersed boundary method in resolving fluid-solid
interface and associated boundary layer phenomena, and the
temperature and heat flux compatibility can be automati-
cally satisfied if a monolithic coupling approach is adopted.
However, they require tremendous effort in pre-processing
to generate the conforming mesh of the fluid-solid inter-
face and volumetric meshes for fluid and solid sub-domains.
They also necessitate sophisticatedmeshmotion and even re-
meshing techniques if the solid undergoes significant motion
or triggers topology changes in the fluid domain [8–10]. On
the other hand, immersed boundary method [11], such as
finite cellmethod [12–14], shifted boundarymethod [15–19],
cutFEM [20], immersed-particle method [21–25], immersed
finite element [26–31], and immersogeometric method [32–
35] offers great mesh flexibility in pre-processing and
handling moving objects. However, the non-boundary-fitted
nature leads to lower resolution of the fluid-solid interface
and boundary layers, which can be problematic in some
multi-phase convectiveCHTproblems, such as those inwater
quenching, where rapid phase transition (e.g., evaporation
and condensation) takes place at the fluid-solid interface.
Besides, it is burdensome to enforce the heat flux compat-
ibility across the fluid-solid interface with large property
discontinuity, especially if linear spatial discretization is
employed.

The objective of this paper is to develop an effectivemulti-
phase convective CHT framework to address the challenges
mentioned above, and deploy it to water quenching processes
of complex structures. The proposed framework aims to take

boundary-fitted method’s advantages in resolving boundary
layers and enforcing heat flux compatibility and immersed
boundary method’s advantage in mesh flexibility of han-
dling moving objects while overcoming their weakness. The
essence of the framework is built upon an overlapping mesh
(also called composite, overset, or Chimera mesh in the lit-
erature [36–41]) technique. An overlapping mesh consists of
multiple meshes that occupy a problem domain and overlap
where theymeet. Interpolation or other numerical techniques
at overlapping boundaries are performed to ensure the con-
tinuity of physical variables across the different component
meshes. Overlapping meshes have been used to solve CFD
and FSI problems involving moving objects. Despite con-
siderable research and applications of overlapping meshes in
the literature, most are based on structured meshes combined
with finite difference or finite volume methods and primar-
ily used for the single-phase CFD simulations in aerospace
applications [42–45]. Developing an overlapping mesh tech-
nique usingfinite elementmethod to solve the conjugateCHT
problems involving multi-phase flows with phase transition
is lacking. An effective multi-phase convective CHT model
is in high demand in the heat treatment and composite man-
ufacturing industries, which currently rely on the empirical
models by calibrating heat transfer coefficients due to the
complexity of the multi-physics and structural geometry.

In this paper, we propose an unstructured overlapping
mesh techniquewith the Schwarz alternatingmethod to solve
the multi-phase convective CHT problems with phase tran-
sitions. The overlapping mesh technique consists of two
overlapping unstructured meshes. One unstructured mesh,
denoted by Mesh 1, which contains the entire solid domain
and partial fluid domain, utilizes a boundary-fitted approach
integrated with Arbitrary-Lagrangian-Eulerian (ALE) tech-
nique to handle moving fluid-solid interface and overlapping
boundaries. Another unstructured mesh, denoted by Mesh
2, which contains the complementary fluid domain, uti-
lizes a non-boundary-fitted discretization of overlapping
boundaries, and a Schwarz alternating method is adopted to
ensure the continuities of flow/temperature fields and the heat
flux compatibility. Since the fluid-solid interface is explic-
itly resolved, the flow/temperature boundary condition and
boundary layer behavior are captured more accurately. The
technique also retains the mesh flexibility of the immersed
boundary method by applying it to a fluid-fluid interface
(overlapping boundary) rather than a fluid-solid interface
to circumvent the challenges associated with large property
ratios and boundary conditions. The unstructured overlap-
ping mesh technique is deployed to a stabilized formulation
of thermalmulti-phase flows.Avolume-of-fluid (VoF)-based
evaporation/condensation model is augmented to handle the
phase transitions. The proposed multi-physics framework is
solved in a quasi-direct coupling strategy between Mesh 1
and Mesh 2 with a multi-stage predictor-corrector iterative
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Fig. 1 Amulti-phase convective conjugate heat transfer (CHT) system
during a water quenching process

scheme and a generalized-α method for time integration. The
coupling strategy is analogous to the approaches proposed
in [46] for solving fluid-structure interaction problems with
moving meshes. That is, within each nonlinear iteration, the
coupled heat and fluid mechanics equations defined inMesh
1 are solved in a monolithic fashion to ensure the exact
enforcement of temperature and flux boundary conditions.
Then, the boundary conditions on overlapping boundaries are
passed toMesh 2 to solve the flow and temperature equations
defined there. Such iterations continue until the residuals of
all the equations of both meshes are reduced below the con-
vergence criteria.

The paper is structured as follows. In Sect. 2, we present
the computational framework of multi-phase CHT problems.
All the details, including the governing equations, semi-
discrete formulation, time integration, Schwarz alternating
method on overlapping unstructured meshes, quasi-direct
coupling, and linear solver, are thoroughly described. Two
verification examples and two realistic water quenching sim-
ulations with stationary and moving metallic structures are
presented in Sect. 3 to demonstrate the proposed framework’s
accuracy and predictive capability. The accuracy is assessed
by comparing the predicted results with available experi-
mental data and the predictions from the single mesh-based
boundary-fitted method. Conclusions are made in Sect. 4.

2 Computational Framework

2.1 Governing equations and phase transition
model

Figure 1 depicts a multi-phase (vapor-liquid) convective
CHT system during a water quenching process, involving
multi-phase flows, thermodynamics, and phase transitions.
The flows are assumed to be incompressible in individual

fluid phase except the vapor-liquid interface, where boiling
and condensation introduces compressibility. We employ an
Arbitrary-Lagrangian-Eulerian (ALE) technique to solve the
system onmoving domains. For the sake of clarity, we utilize
subscripts (·) f , (·)s , and (·)m to differentiate the quantities
associatedwith the fluid domain, solid domain, and themesh,
respectively. In the fluid domain, (·) f can be set to (·)l and
(·)v to differentiate the liquid and vapor phases. With the
above definitions, the physical behaviors of the multi-phase
convective CHT system can be described by the following
partial differential equations.

RC
f := ∂ρ f

∂t
+ (u − um) · ∇ρ f + ρ f ∇ · u = 0 in Ω f (1)

RM
f := ρ f

[
∂u
∂t

+ (u − um) · ∇u − g
]

− ∇ · σ = 0 in Ω f (2)

RT
f := ∂H f

∂t
+(u−um)·∇H f +H f (∇ · u)−∇ · (κ f ∇T f )=0 in Ω f

(3)

Rφ
f := ρv

∂φ

∂t
+ ρv(u − um) · ∇φ + ρvφ(∇ · u) − ṁ = 0 in Ω f

(4)

RT
s := ρscs

∂Ts
∂t

− ∇ · (κs∇Ts) = 0 in Ωs (5)

u − ug = 0 on Γ f s (6)
Ts − T f = 0 on Γ f s (7)
κsns · ∇Ts + κ f n f · ∇T f = 0 on Γ f s (8)

where Ω f , Ωs , and Γ f s denote the fluid sub-domain, solid
sub-domain, andfluid-solid interface, respectively. The phys-
ical meaning of each equation is given as follows.

• In the fluid sub-domain, Eqs. 1 and 2 represent the con-
servation laws of mass and momentum (Navier-Stokes
equations), where σ = −p I +2μ f [∇Su− 1

3 (∇ ·u)I] is
the stress, where I is an identity matrix, ∇S is the sym-
metric gradient operator, u and p denote the fluid velocity
and pressure unknowns, g is the gravitational acceler-
ation, ρ f and μ f are the fluid density and dynamics
viscosity, respectively. Eq. 3 represents the conservation
of energy, in which κ f is conductivity of liquid and H is
the enthalpy. H f is defined as Hv = ρvcv(T f −T0)+ρvL
in the vapor phase and Hl = ρl cl(T f − T0) in the liq-
uid phase, where T f is the fluid temperature, cl and cv

are the heat capacities of liquid and vapor phases, T0 is
a reference temperature, and L is the latent of vaporiza-
tion. Eq. 4 represents the volume of fluid (VoF) transport
equation, in which φ denotes the vapor fraction and ṁ
represents the phase transitionmodel, whichwill be spec-
ifiednext. In thefluiddomain, all the equations arewritten
in the ALE form with um representing the mesh velocity.

• In the solid sub-domainΩs , Eq. 5 represents the heat con-
duction, in which Ts is the solid temperature, ρs , cs , and
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κs are the solid density, heat capacity, and conductivity,
respectively.

• On fluid-solid interface Γ f s , Eqs. 6, 7, and 8 represent
the no-slip (ug is the velocity of the solid), heat, and
flux boundary conditions, where n f and ns are the unit
normal vector on the fluid-solid interface (ns = −n f ).

We make use of a mixture multi-phase flowmodel, mean-
ing any mechanical/thermal property χ f in the fluid domain
is given by the linear combination of the corresponding liquid
property and vapor property, namely,

χ f = φχv + (1 − φ)χl (9)

Water quenching processes involve rapid boiling and con-
densation phenomena. To this end, we employ the following
evaporation-condensation model, adopted from [47,48], to
simulate the phase transitions between liquid and vapor
phases. This model takes care of the phase transitions near
the fluid-solid interface as well as inside the fluid domain.

ṁ =
{
Cevap(1 − φ)ρl

T f −Tsat
Tsat

, T f > Tsat

Ccondφρv
T f −Tsat
Tsat

, T f ≤ Tsat
(10)

whereCevap andCcond are the evaporation and condensation
coefficients, Tsat is the saturation temperature. The values of
Cevap and Ccond depend on the mean Sauter diameter of the
vapor bubble, phase fraction, and fluid properties. Generally,
these two coefficients need to be evaluated experimentally
for a given quenchingmedium. Following the guidelines pro-
vided by [47], we set Cevap = 1 and Ccond = 0.1 for the water
quenching processes considered in this paper.

With the above the VoF mixture and evaporation models,
the conservation laws of mass and enthalpy are further mod-
ified such that all physical unknowns of the mathematical
model are based on fluid velocity, pressure, vapor fraction,
and temperature. Firstly, substituting ρ f = φρv + (1− φ)ρl
(based on Eq. 9) and the VoF transport equation (Eq. 4) into
the mass conservation equation (Eq. 1) leads to

RC
f := ∇ · u −

(
ṁ

ρv

− ṁ

ρl

)
= 0 (11)

Secondly, substituting H f = φHv + (1 − φ)Hl (based on
Eq. 9) and theVoF transport equation (Eq. 4) into the enthalpy
conservation equation (Eq. 3) leads to

RT
f =: ρ f c f

[
∂T f

∂t
+ (u − um) · ∇T f

]
− ∇ · (κ f ∇T f ) − Se = 0

(12)

where Se is a source term representing the phase transitions
and defined as

Se = [(cl − cv)(T − T0) − L] ṁ (13)

2.2 Semi-discrete formulation

We employ a stabilized finite element method to solve the
partial differential equations of the multi-phase convective
CHT system defined in the previous section. Besides, a
residual-based discontinuity capturing technique [49,50] is
augmented to handle the strong thermal property jump, and
a weak enforcement of essential boundary conditions [51]
(weak BC) is adopted to impose the no-slip flow boundary
condition defined in Eq. 6.

In the fluid sub-domain Ω f , let Vf denote the trial func-
tion space for unknown fluid velocity u, pressure p, volume
fraction φ, and fluid temperature T f . Wf denotes the test
function space for the momentum, continuity, enthalpy, and
volume fraction equations. In the solid sub-domain Ωs , let
Vs denote the trial function space for unknown solid tem-
perature Ts , and Ws denote the test function space for the
heat conduction equation. With the above definitions, the
stabilized formulation augmented with discontinuity captur-
ing and weak BC techniques for the multi-phase convective
CHT system is stated as: ∀{w, q, ζ, η f } ∈ Wf and ηs ∈ Ws ,
find {u, p, φ, T f } ∈ Vf and Ts ∈ Vs , such that

WG ({w, q, ζ, η f , ηs}; {u, p, φ, T f , Ts}
)

+ Wstab ({w, q, ζ, η f }; {u, p, φ, T f }
)

+ Wbc ({w, q}; {u, p}) = 0 (14)

The meaning of each component is specified as follows.

• WG represents the Gakerlin formulation of the multi-
phase convective CHT problem, defined as

WG ({w, q, ζ, η f , ηs}; {u, p, φ, T f , Ts}
)

=
∫

Ω f

w · ρ f

[
∂u
∂t

+ (u − um) · ∇u − g
]
dΩ

+
∫

Ω f

∇w : σdΩ +
∫

Ω f

q

[
∇ · u − ṁ(

1

ρv

− 1

ρl
)

]
dΩ

+
∫

Ω f

η f

{
ρ f c f

[
∂T f

∂t
+ (u − um) · ∇T f

]
− Se

}
dΩ

+
∫

Ω f

∇η f · κ f ∇T f dΩ

+
∫

Ω f

ζ

{
ρv

[
∂φ

∂t
+ (u − um) · ∇φ + φ∇ · u

]
− ṁ

}
dΩ

+
∫

Ωs

(ηsρscs
∂Ts
∂t

+ ∇ηs · κs∇Ts)dΩ (15)
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• Wstab represents the stabilized method and is defined as

Wstab ({w, q, ζ, η f }; {u, p, φ, T f }
)

=
∫

Ω f

τ f

[
(u − um) · ∇w + ∇q

ρ f

]
· RM

f dΩ

+
∫

Ω f

τCρ f (∇ · w)RC
f dΩ

+
∫

Ω f

τT (u − um) · ∇η f R
T
f dΩ

+
∫

Ω f

τφ(u − um) · ∇ζ Rφ
f dΩ

+
∫

Ω f

κT
dc∇η f · ∇T f dΩ +

∫
Ω f

κ
φ
dc∇ζ · ∇φdΩ

(16)

where RM
f , RC

f , RT
f , and Rφ

f are the residuals based
on Eq. 2, Eq. 11, Eq. 12, and Eq. 4. τ f , τC , τT , and
τφ are the stabilization parameters based on streamline
upwind Petrov-Galerkin (SUPG), pressure-stabilizing
Petrov-Galerkin (PSPG), and Least Square on Incom-
pressibility constrain (LSIC) [52–54]. Their definitions
are given as

τ f =
[

4

Δt2
+ 4|u|2

h2
+ CI (

ν

h2
)2

]− 1
2

(17)

τC = h2

12τ f
(18)

τT =
[

4

Δt2
+ 4|u|2

h2
+ CI (

α

h2
)2

]− 1
2

(19)

τφ =
[

4

Δt2
+ 4|u|2

h2

]− 1
2

(20)

where Δt is the time step, h is the minimum edge length
of the tetrahedron element, ν = μ f

ρ f
and α = κ f

ρ f c f
, CI

is a constant number emanating from the element-wise
inverse estimate [55], which is set to 16 in this work.
It is noteworthy to mention that the stabilized FEM for-
mulation and its variants, such as Arbitrary Lagrangian-
Eulerian technique (ALE-VMS) [56–62] and Space-
Time (ST-VMS) technique [63–67], have successfully
bean employed as large eddy simulation (LES) models in
simulating of a wide range of challenging fluid dynamics
and fluid-structure interaction problems. These meth-
ods show significant advantages when being deployed
to flow problems with moving interfaces and boundaries.
Several recent validations and applications include envi-
ronmental flows [68–71], wind energy [59,72–90], tidal
energy [88,91–95], cavitation flows [96,97], supersonic

flows [98], bio-mechanics [99–104], gas turbine [105–
107], and transportation engineering [108–113].

• At last, Wbc represents the weak enforcement of the no-
slip boundary conditions at the fluid-solid interface. The
last line of Eq. 16 corresponds to the residual-based dis-
continuity capturing terms, with κT

dc and κ
φ
dc given as

κT
dc = h

2

|RT
f |

|∇T f | (21)

κ
φ
dc = h

2

|Rφ
f |

|∇φ| (22)

It should be noted that discontinuity capturing is not
employed for the Navier-Stokes equations in the present
work.

Wbc ({w, q}; {u, p}) = −
∫

Γ f s

w · σdΓ

−
∫

Γ f s

n f · (∇Sw + q I) · (u − ug)dΓ

−
∫

Γ −
f s

ρ f [n f · (u − um)][w · (u − ug)]dΓ

+
∫

Γ f s

τBw · (u − ug)dΓ (23)

whereΓ −
f s is the inflowportion ofΓ f s , where u·n f < 0.

The above weak BC technique can be derived by an aug-
mented Lagrangian approach. The detailed interpretation
of each term can be found in [51]. The parameter τB is a
penalty-like parameter that helps to satisfy the essential
BC and improve the stability of the variational formula-
tion. More details about the definition of τB and several
applications can be found in [51,114,115].

Fig. 2 Overlapping meshes and alternating boundaries
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2.3 Overlappingmesh technique and Schwarz
alternatingmethod

The variational formulation of Eq. 14 is solved with an
overlapping mesh technique enabled by Schwarz alternating
method. Schwarz alternating method was first introduced by
Hermann Schwarz in the theory of conformalmapping. It has
been utilized as an iterative method for solving a problem in
the union of two overlapping domains.Without losing gener-
ality, letL(v) = 0 be a generic problem defined in a domain
Ω (a circle). As shown in Fig. 2, the solution of L(v) = 0
in Ω is approximated by two overlapping domains, Ω1 (a
rectangle) andΩ2 (an annulus), with ∂Ω1 and ∂Ω2 represent-
ing their boundaries. Ω = Ω1 ∪ Ω2. Two non-overlapping
boundaries between Ω1 and Ω2, which are used to alternate
the boundary conditions. They are defined as

Γ12 = ∂Ω1 ∩ Ω2 (24)

Γ21 = ∂Ω2 ∩ Ω1 (25)

Γ12 ∩ Γ21 = ∅ (26)

Then, the solution ofL(v) = 0 can be found by the following
iterative process.

• Step 0: Make an initial guess of v on Γ12

• Step 1: Solve L(v) = 0 in Ω1 using the BC on Γ12.
• Step 2: Use the solution from Step 1 to get the BC on

Γ21

• Step 3: Solve L(v) = 0 in Ω2 using the boundary con-
ditions on Γ21.

• Step 4: Use the solution from Step 3 to get the BC on
Γ12, then go to Step 1.

2.4 Quasi-direct coupling and time integration

In this section, we deploy the quasi-direct coupling strategy
and time integration using the generalized-α time integra-
tion scheme in the context of overlapping mesh technique
and Schwarz alternating method. We solve the multi-phase
convective CHT problem using two overlapping meshes Ω1

and Ω2. Ω1 contains the entire solid sub-domain and partial
fluid sub-domain, andΩ2 occupies the rest fluid sub-domain.
Boundary-fitted mesh is utilized to represent the fluid-solid
interface. The equations in Ω1 are solved in a monolithic
fashion to satisfy the temperature and flux compatibility
constraints automatically. A quasi-direct coupling strategy,
similar to those used in fluid-structure interaction analy-
sis [46], is developed to iterate the coupling between Ω1

and Ω2.
Without losing generality, let {RM

f 1, R
C
f 1, R

φ
f 1, R

T
f 1, R

T
s }

denote the generic nodal residuals of fluid momentum, conti-
nuity,VoF,fluid temperature, and solid temperature equations
in Ω1 after spatial discretization and {U f 1, P f 1,Φ f 1, T f 1,

T s} denote the corresponding unknown nodal vectors for
fluid velocity, pressure,VoF, fluid temperature, and solid tem-
perature. In Ω2, {RM

f 2, R
C
f 2, R

φ
f 2, R

T
f 2} denote the generic

nodal residuals of momentum, continuity, VoF, and fluid
temperature, and {U f 2, P f 2,Φ f 2, T f 2} denote the corre-
sponding unknown nodal vectors for fluid velocity, pressure,
VoF, and fluid temperature.

Application of the generalized-α time integration scheme
to the multi-phase convective CHT variational formula-
tion defined in two overlapping meshes (Ω1 and Ω2)
leads to two coupled nonlinear systems that need to be
solved at every time step, namely: Given the solutions at
tn , find {U f 1, P f 1,Φ f 1, T f 1, T s}, {U f 2, P f 2,Φ f 2, T f 2},
and their time derivatives at tn+1, such that,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R̃
M
f 1

R̃
C
f 1

R̃
φ

f 1

R̃
T
f 1

R̃
T
s

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RM
f 1

RC
f 1

Rφ
f 1

RT
f 1

RT
s

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭(

U̇
n+αm
f 1 ,U

n+α f
f 1 , Ṗ

n+αm
f 1 ,P

n+α f
f 1 ,Φ̇

n+αm
f 1 ,Φ

n+α f
f 1 ,Ṫ

n+αm
f 1 ,T

n+α f
f 1 ,Ṫ

n+αm
s ,T

n+α f
s

)

= 0 in Ω1 (27)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R̃
M
f 2

R̃
C
f 2

R̃
φ

f 2

R̃
T
f 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RM
f 2

RC
f 2

Rφ
f 2

RT
f 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭(

U̇
n+αm
f 2 ,U

n+α f
f 2 , Ṗ

n+αm
f 2 ,P

n+α f
f 2 ,Φ̇

n+αm
f 2 ,Φ

n+α f
f 2 ,Ṫ

n+αm
f 2 ,T

n+α f
f 2

)
= 0 in Ω2 (28)
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where the residuals are enforced to be 0 at the inter-
mediate states. The intermediate state of X (X can be
U f 1, P f1,Φ f 1, T f 1, T s,U f 2,Φ f 2, or T f 2) and its time
derivative are evaluated as

Xn+α f = α f Xn+1 + (1 − α f )Xn (29)

Ẋ
n+αm = αm Ẋ

n+1 + (1 − αm)Ẋ
n

(30)

To link a variable and its time derivative from tn to tn+1, the
Newmark-β scheme is utilized, namely,

Xα = Xn + Δt[γ Ẋ
α + (1 − γ )Ẋ

n] (31)

We adopt the Newton-Raphson method to linearize the
nodal nonlinear equations defined in Eq. 27 and Eq. 28 with
respect to time derivative at n + 1 state, which results in a
multiple predictor-corrector iterative algorithm.The iteration
starts with an initial guess based on the solutions at tn from
both Ω1 and Ω2. Then, at lth iteration, the following quasi-
direct coupling strategy is employed to solve the systems
(Eq. 27 and Eq. 28) defined in Ω1 and Ω2. With the above
definitions, the following iterative process is repeated until
convergence is achieved in both Ω1 and Ω2.

• Step 1:Use the intermediate states to assemble the resid-
uals and the corresponding Jacobian matrix of the linear
system at the lth iteration in Ω1, namely,
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• Step 2: Solve the above system and update the solution
in Ω1 based on the following two equations.
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and
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• Step 3: Use the updated solutions in Ω1 to obtain the
boundary conditions on Γ21 and use the intermediate
states to assemble the residuals and the corresponding
Jacobian matrix of the linear system at the lth iteration
in Ω2, namely,
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• Step 4: Solve the above linear system and update the
solutions in Ω2 based on
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and
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• Step 5: Use the above updated solutions in Ω2 to obtain
the boundary conditions on Γ12. Then, go to Step 1

Remark 1 The linear systems defined in Eq. 32 andEq. 35 are
solved by a generalized minimal residual method (GMRES)
with a three-level recursive preconditioning technique, pro-
posed in [116].
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Remark 2 One should note that pressure field at n+1, rather
than α state, is used to evaluate the residuals (Eq. 27 and
Eq. 28). A discussion on this choice and its significance can
be found in [117].

Remark 3 In Step 3 and Step 5, both essential and natural
BCs can be alternated between Ω1 and Ω2. The prescribed
values of each node on Γ12 (or Γ21) can be obtained by
interpolation using the shape functions of the element in
Ω2 (or Ω1), which contains this node. For pure stationary
overlapping meshes, the point-to-element location process
is pre-computed to save computational cost. For moving
overlapping meshes, an octree-based algorithm [35,116] is
adopted to speed up the search process.

3 Numerical Examples

We present numerical examples to demonstrate the proposed
framework’s accuracy and flexibility in handling moving
objects and apply the framework to simulate realistic water
quenching processes of metallic structures.

3.1 Poisson equation

We first solve a one-dimensional Poisson equation using the
overlapping framework. Poisson equation has wide applica-
tions in electromagnetic mechanics, static heat conduction,
and even porous media flow problems. This example is to
study the accuracy and convergence rate of the proposed
method. The problem is defined as,

∇2u = (x + 2)ex x ∈ [−1, 1] (38)

u(−1) = −1

e
(39)

u(1) = e (40)

where u = u(x) is the unknown solution. This boundary
value problem has the following exact solution.

u = xex (41)

We perform refinement study of this problem. The over-
lapping decomposition of the domain consists of two parts
as shown in Fig. 3. One part is defined in {x | − 1 ≤
x ≤ 0.25}, and the other is defined in {x | − 0.25 ≤
x ≤ 1}. Four meshes with uniform element sizes (h =
1.25/100, 1.25/200, 1.25/400, 1.25/800) are tested.

Figure 4 shows the solution from the coarsest mesh (h =
1.25/100). Mesh 1 and Mesh 2 deliver almost the identical
solution in the overlapped region.

Fig. 3 Two overlapping meshes used to solve the Poisson equation

Fig. 4 Comparison between the exact solution and the numerical pre-
diction with h = 1.25/100

Fig. 5 L2 norm of error with different resolutions h =
1.25/100, 1.25/200, 1.25/400, and 1.25/800. The black dashed line
is a reference line with slope 2

The L2 norm of the error with different mesh sizes is
plotted in Fig. 5, showing that the error reduces with mesh
refinement with a convergence rate of around 2.00.
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Fig. 6 Spatio-temporal solution contour of a Burger’s equation using
h = 1/200

Table 1 Properties of the quenching medium and the AL part

Property Notation Value

Water density ρl 1000 kg/m3

Water heat capacity cl 4200 J/(kg · K)

Water heat conductivity κl 0.65 W/(m · K)

Water viscosity μl 10−3Pa · s
Vapor density ρv 1.23 kg/m3

Vapor heat capacity cv 1996 J/(kg · K)

Vapor heat conductivity κv 0.067 W/(m · K)

Vapor viscosity μv 1.3 × 10−4 Pa · s
Part density ρs 2700 kg/m3

Part heat capacity cs 921.0 J/(kg · K)

Part heat conductivity κs 205.0 W/(m · K)

Latent heat of vaporization L 2.265 × 106J/kg

3.2 Burgers’ equation

We continue to solve a one-dimensional Burgers’ equation.
The Burgers’ equation can be viewed as a Navier-Stokes
momentum equation without pressure. The Burgers’ equa-
tion occurs in various areas of applied mathematics and
engineering science, such as nonlinear acoustics, gas dynam-
ics, and traffic flow. The study’s purpose is to verify whether
the overlapping technique using Schwarz alternating method
delivers the same result as a single mesh-based approach.
The Burger’s equation considered in this paper with initial
and boundary conditions is defined as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
x ∈ [−1, 1] (42)

u(t,−1) = u(t, 1) = 0 (43)

u(0, x) = sin(−πx) (44)

where u = u(t, x) is the unknown field and ν is the
diffusion coefficient, which is set to 0.01

π
in this paper.

The simulation domain is the same as that of the pre-
vious section. Four different mesh resolutions with h =
1.25/50, 1.25/100, 1.25/200, and 1.25/400 are selected to
investigate the problem. Time step Δt is set to 0.01 for all
the cases. The contour of solution of u(t, x) based on the
mesh with h = 1.25/200 is shown in Fig. 6. The solutions of
u(t, x) from all the meshes at three different time instances
are plotted in Fig. 7, in which a reference result based on
a single mesh-based simulation (h = 1/3200) is plotted for
comparison. The plot shows that the same results are obtained
in the overlapped region from both meshes. The comparison
with the single mesh-based solution also indicates that all the
overlapping meshes deliver accurate predictions and quickly
converge to the reference results with mesh refinement.

3.3 Simulation of water quenching process of a
stationary metallic part

In this section, we apply the proposed framework to simu-
late awater quenching process of a stationary aluminum (AL)
part. The simulation aims to enable accurate temperature pre-
diction inside the part directly from the quenching parameters
without invoking the empirical heat transfer coefficients. This
water quenching process was experimentally investigated in
[2], which employs a cubic water tank to quench a metallic
structure based on AL-319 alloy. The structure is first heated
in a furnace up to 500 ◦C and then immersed into the quench-
ing tank with an initial temperature of 75 ◦C. No agitation
flow is applied during the process. The mechanical and ther-
mal properties of the quenching medium (based on water)
and quenched AL part, determined by ThermoCalc R©, are
listed in Table 1. The computer-aided design (CAD) model
of the structure, its dimensions, and the locations of installed
thermocouples are shown in Fig. 8. The simulation domain
is a box with dimensions 800mm× 800mm× 900mm. The
simulation domain is discretized by two overlapping meshes
(see Fig. 9), in which a boundary-fitted box mesh (Mesh1)
with dimensions 120 mm × 200 mm × 300 mm is used to
represent the whole solid domain and partial fluid domain.
A complementary mesh (Mesh 2) is used for the rest of the
fluid domain. The computational domain is meshed by linear
tetrahedral elements. A local refinement (with h = 1.5 mm)
is designed around the part to better capture the boiling and
condensation processes. The total number of nodes and ele-
ments of the two meshes employed in the simulation is listed
in Table 2. The following boundary conditions are applied.
For the fluid field, a no-penetration boundary condition is
applied to every surface of the entire computational domain.
For the temperature field, a no-flux boundary condition is
applied to every surface except the top surface, where a con-
vective boundary condition is applied. Constant Δt = 0.25
ms is used throughout the simulation. To validate the over-
lapping mesh technique, we conduct a single mesh-based
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Fig. 7 The solution of Burgers’
equation: Overlapping mesh
method solutions at t=0.25,
0.50, 0.75 with element length
h = 1.25/50, 1.25/100,
1.25/200, and 1.25/400; the
single mesh result using
h = 1/3200 is also plotted for
comparison (This high
resolution is chosen to ensure its
credibility as a reference
solution)

simulation employing the same setup parameters. Both sim-
ulations are performed in parallel using Stampede2 at Texas
Advanced Computing Center (TACC) with 192 processors.
The simulations run for 10 s in physical time.

Figure 10 shows the vapor plume and temperature in the
part at three time instances during the quenching process.
In the beginning, a large amount of vapor is generated by
the evaporation due to the high part temperature. The vapors
rapidly rise towards the top surface due to buoyancy, intro-
ducing turbulent multi-phase flows in the tank (see Fig. 11),
which results in non-uniform temperature distribution in the
part (see Fig. 10 (B)). As the heat is transferred from the
part to the quenching medium, the part surface temperature
decreases and slows down the vapor generation. Figures 11
and 12 show the comparison between the simulations using

Fig. 8 CAD model of the quenched AL part. The thermocouples are
placed 12.5 mm beneath the surface markers
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Fig. 9 Overlapping meshes
employed in the simulation

Fig. 10 (A) Vapor plume. (B)
Part temperature

overlapping meshes and a single mesh in the prediction of
temperature distribution, vapor fraction, and velocity magni-
tude on the middle plane of the tank. The overlapping mesh
approach can deliver continuous solutions across the overlap-
ping boundaries. Similar predictions of flow and temperature
fields are observed between the single mesh and overlapping
approaches. At last, we plot the predicted temperature history
of the three thermocouples (see Fig. 8 for their locations) in

Fig. 13, in which the experimental data obtained from [2] at
the same locations are plotted for comparison. The simulated
results agreewellwith themeasureddata.Wecan also see that
the proposed framework using overlapping meshes provides
equivalent accuracy as its single mesh-based counterpart.
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Table 2 Number of nodes and elements of the meshes employed in the
quenching process of a stationary AL part

Mesh 1 (Ω1) Mesh 2 (Ω2)

Number of nodes 353,308 829,965

Number of elements 2,069,330 4,788,939

3.4 Simulation of water quenching process of a
rotatingmetallic gear

We further demonstrate the proposed framework’s capability
in handling moving objects by applying it to simulate a water
quenching process of a rotating metallic gear. The mechan-
ical and thermal properties of the quenching medium and
the gear are the same as those used in the previous section.
The computer-aided design (CAD) model of the gear and
its dimensions are depicted in Fig. 14. Figure 15 shows the
overlapping meshes employed in the simulations. The entire
computational domain is a box with dimensions 480 mm ×
480 mm × 350 mm. The computational domain consists of
two overlapping meshes. Similar to the previous section, one

boundary-fitted cylindrical mesh (Mesh 1) with 340 mm in
diameter and 120 mm in height is utilized to represent the
whole solid domain and partial fluid domain. A complemen-
tary mesh (Mesh 2) is used to represent the rest fluid domain.
The cylindrical mesh rotates with the rotating gear through
an ALE technique to maintain boundary-fitted surface rep-
resentation. A local refinement (with h = 1 mm) is designed
around the gear to better capture the boiling and condensation
processes. Table 3 summarizes the statistics of the meshes.
To investigate the effects of gear rotation on the flow and
temperature field, a stationary case and a rotational case with
speedω = 4π rad/s are simulated using the samemesh. Both
cases utilize a constant Δt =0.25 ms throughout the simula-
tions. The following boundary conditions are applied on the
boundaries of the entire computational domain. For the fluid
field, a no-penetration boundary condition is applied to every
surface. For the temperature field, a no-flux boundary condi-
tion is applied to every surface except the top surface, where
a convective boundary condition is applied. The simulations
are performed in the sameparallel environment in Stampede2
of TACC as specified in the previous section.

Fig. 11 Comparison of velocity
prediction between single mesh
and overlapping mesh
approaches: t = 0.1 s, 0.5 s, 1.5
s, and 8.0 s

Fig. 12 Comparison of
temperature prediction between
single mesh and overlapping
mesh approaches: t = 0.1 s, 0.5
s, 1.5 s, and 8.0 s
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Fig. 13 Temperature history on three thermocouples: experimental
measurement vs. numerical predictions using single mesh and over-
lapping mesh approaches

Comparisons between the rotational case and the station-
ary case are shown in Figs. 16 and 17. Figure 16 plots the
velocity magnitude and vapor fraction on a horizontal plane
of the computational domain at t = 1 s. The motion of the
gear results in a more substantial flow motion in the tank and
facilitates the traveling of vapors from the gear surface to the
interior of the tank. Figure 17 shows the vapor iso-surfaces
and temperature contours on the gear surface at t = 1 s. Dis-
tinctive vapor plume profiles are observed between the two
cases. The traces of the rotation of the gear can be found in
the temperature contour on the gear surface. At last, the tem-
perature history at five representative locations in the gear’s
cross-section (averaged over all the gear teeth) is plotted in
Fig. 18. In general, the motion of the gear speeds up the cool-
ing process. The effect becomes more pronounced in TC2,
which is closest to the gear’s tip that has the biggest linear
speed among these locations.

4 Conclusions

In this paper, we presented a new computational frame-
work for the multi-phase convective conjugate heat transfer
systems arising from heat treatment and composite man-

Fig. 15 Overlapping meshes employed in the water processes of a
metallic gear

Table 3 Number of nodes and elements of the meshes in the gear
quenching case

Mesh 1 (Ω1) Mesh 2 (Ω2)

Number of nodes 473,949 371,135

Number of elements 2,770,121 2,148,150

ufacturing processes. The paper tried to address some of
the longstanding challenges of existing boundary-fitted and
immersed boundary approaches in handling this class of
problems stemming from heat flux enforcement, mesh flex-
ibility and boundary layer resolution. The novelty of the
proposed framework is marked by the meticulous integra-
tion of an overlapping mesh technique, stabilized methods
for thermal multi-phase flows, and a novel quasi-direct
coupling strategy with Schwarz alternating method. The
proposed framework allows highly accurate resolution of
the fluid-solid interface and boundary layer behavior and
simultaneously offers tremendous mesh flexibility in han-
dling moving structures. We verified and validated the
proposed framework through benchmark problems and real-
world quenching processes. The simulated results show good
agreement with experimental measurements. Through these
demonstrations, we believe the proposed framework pos-
sesses excellent potential in multi-phase convective CHT
systems and can be applied to a wide range of heat treat-
ment and advanced manufacturing processes.

Fig. 14 CAD model of the gear
and its dimensions
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Fig. 16 Comparison between
water quenching processes with
a stationary gear and a rotational
gear. (A) Velocity magnitude on
a horizontal plane at t= 1.0 s.
(B) Vapor fraction on a
horizontal plane at t= 1.0 s

Fig. 17 Comparison between
water quenching processes with
a stationary gear and a rotational
gear. (A) Vapor flumes at t= 1.0
s. (B) Temperature contour on
the gear’s surface at t= 1.0 s
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Fig. 18 (A) Location of thermocouples. (B) Comparison of the time
history of temperature of these thermocouples between the stationary
and rotational cases
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