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Abstract
This paper presents a predictive computational framework for surrogate modeling of pressure field and optimization of
pressure sensor placement for wind engineering applications. Firstly, a machine learning-derived surrogate model, trained by
high-fidelity simulation data using finite element-based CFD and informed by a turbulence model, is developed to construct
the full-field pressure from scattered sensor measurements in near real-time. Then, the surrogate pressure model is embedded
in another neural network (NN) for optimizing pressure sensor placement. The goal of the NN-based optimizer is to learn the
best layout of a fixed number of pressure sensors over the structural surface to deliver the most accurate full-field pressure
prediction for various inflowwind conditions. We deploy the model to a representative low-rise building subjected to different
wind conditions. The performance of the proposed framework is assessed by comparing the predicted results with finite
element-based CFD simulation results. The framework shows excellent accuracy and efficiency, which could be potentially
integrated with structural health monitoring to enable digital twins of civil structures.

Keywords CFD · Machine learning · Finite element for fluid mechanics

1 Introduction

Civil structures in the U.S. coastal areas, home to more
than 127 million people, have always been a critical con-
cern because of frequent extreme wind events. Predicting
the pressure field on structures is vital for responding to and
mitigating threats of extreme wind events to civil structures.
In recent years, numerical simulations based on compu-
tational fluid dynamics (CFD) are becoming prevalent in
structural/wind engineering research communities because
of their systematic, repeatable, controllable boundary con-
ditions and their ability to estimate wind-induced pressure
loads. Two popular CFD approaches are Reynolds-averaged
Navier–Stokes (RANS) and large-eddy simulations (LES).
Despite the distinct turbulence models used, the core of
RANS and LES is based on numerical discretizations of the
respective governing equations (e.g., time-averaged Navier–
Stokes equations with closure model in RANS and filtered
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Navier–Stokes equations in LES) or their weak forms. These
two approaches will continue to play essential roles in civil
engineering practice. However, they have two critical limi-
tations for wind-induced pressure predictions. Firstly, these
two methods are computationally expensive and sometimes
take longer time than wind tunnel tests to simulate the same
physical time length. With the surge of interest in develop-
ing and adopting digital twins, employing these models in
digital twins that require real-time prediction is challenging
for large-scale civil structures due to the high computational
cost. Secondly, both methods don’t fully harness the value of
labeled and high-fidelity simulation data, which are primar-
ily used for verification and validation purposes. Embedding
the labeled data into the predictivemodels generated by these
methods to extrapolate to new wind scenarios is extremely
challenging.

Recent years have witnessed the boom of machine learn-
ing (ML) and data-driven models in engineering design and
analysis, such as material design, cardiovascular modeling,
heat transfer, water resources, and advanced manufactur-
ing [1–17]. Among many ML models, scientific machine
learning (SciML) has shown significant potential to accel-
erate scientific predictions by harnessing data from exper-
iments and high-fidelity physics-based simulations. One
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widely used approach of SciML is to train a conventional
deep learning (DL) model such as Gaussian process regres-
sion (GPR), or deep neural network (NN) informed physical
principles, e.g., conservation laws and constitutive relation-
ships. These conservation laws are usually represented by
partial differential equations (PDEs). One significant advan-
tage of these physics-informed machine learning models is
that they don’t require big-data owing to the highly con-
densed knowledge embedded in the physical principles.
Existing research has demonstrated SciML’s capability in
various engineering areas. In particular, SciML has been
proved to be a powerful tool for developing surrogate mod-
els and reduced-order models (ROMs) with well-balanced
accuracy and efficiency using sparse training data [12] (even
without training data [18]).

In light of these advances, a predictive SciML-based com-
putational framework for wind-induced pressure loads is
proposed in this paper. The SciML framework has two main
functionalities. The first is a surrogate model for wind pres-
sure derived via a physics-informed neural network (PINN).
The surrogate model can quickly recover the full-field pres-
sure profile from scattered measurements, maintaining high
accuracy while causing less computational cost compared
with LES and RANSmodels. Nowadays, many smart homes
are equipped with installed sensors. The surrogate model
could be potentially integrated with the monitoring system
such that homeowners can know thewind loads on their roofs
in real-time. The second is an ML-based optimizer using the
PINN-based surrogatemodel as a fast evaluation tool to learn
the best placement for a given number of pressure sensors
to achieve the best predictive accuracy over a wide range
of wind conditions. The sensor placement optimizer allows
users to maximize the value of a limited budget with a given
number of pressure sensors. To demonstrate the effective-
ness of the proposed framework, we utilize a RANS model
using a stabilized finite element method (FEM) to generate
synthetic training and validation data. A classical flat roof is
selected for investigation in this paper.

The remaining paper is organized as follows. Section 2
presents the finite element-based RANS model. Section 3
presents the details of the problem considered in this paper
and the training/testing data generation. Section 4 describes
the mathematical details of the pressure surrogate model and
the optimization algorithm for the pressure sensor placement.
The ML architecture and training method used in the frame-
work are also described in this section. Section 5 analyzes
the effects of sensor location and number. The conclusions
are drawn in Sect. 6.

2 High-fidelity model

Let � denote the problem domain. The wind velocity u and
wind pressure p in � are governed by the following Navier–
Stokes equations of incompressible flows

ρ

(
∂u
∂t

+ u · ∇u − g
)

− ∇ · σ = 0 in � (1)

∇ · u = 0 in � (2)

whereρ is thefluid density, g is the gravitational acceleration,
σ = (−p I+2μ∇su) is the Cauchy stress tensor, in whichμ

is the dynamic viscosity,∇s is the symmetric part of gradient
operator, and I is a 3 × 3 identity tensor.

Equations 1 and 2 are subjected to following Dirichlet and
Neumann boundary conditions

LBC (u, p) =
{
u − ubc = 0 on �D

σ · n − h = 0 on �N
(3)

where ubc is the prescribed velocity on Dirichlet boundary
�D (e.g., inlet), h is the prescribed fluid traction on the Neu-
mann boundary �N , and n is the unit normal vector on the
boundary.

This paper focuses on predicting mean wind pressure pro-
files on structural surfaces. Given the large Reynolds (Re)
number considered, a classical time-independent Reynolds-
averaged Navier–Stokes (RANS) approach using a mixing
length algebraic turbulence closure model is adopted. The
RANS equations are given as

LM (ū, p) = ρ
[
ū · ∇ ū − g

] − ∇ · σt = 0 in � (4)

LC (ū) = ∇ · ū = 0 in � (5)

where ū and p̄ are the Reynolds-averaged velocity and pres-
sure fields. σt = − p̄ I + 2μt∇s ū is the turbulent Reynolds
stress tensor, whereμt = μ+ρL2

mix

√
2∇s ū : ∇s ū is the tur-

bulent viscosity, in which Lmix = κ y is a mixing length with
κ being the Von Karman constant and y being the minimum
distance to the wall.

The aboveRANSmodel is solved by a stabilized finite ele-
ment method based on Streamline upwind Petrov–Galerkin
(SUPG) and Pressure-Stabilizing Petrov–Galerkin (PSPG)
formulations [19–21]. Let V u and V p denote discrete veloc-
ity, and pressure trial function spaces, andWu andW p denote
the corresponding test function spaces. The weak form of the
RANS model is stated as follows. Find ū ∈ V u and p̄ ∈ V p

such that for ∀ w̄ ∈ Wu and q̄ ∈ W p

B ({w̄, q̄}, {ū, p̄}) − F ({w̄, q̄}) = 0 (6)
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Fig. 1 Problem setup. Left:
Wind flow pass a flat roof.
Right: Dimensions of the roof

where B ({w̄, q̄}, {ū, p̄}) and F ({w̄, q̄}) are given as

B ({w̄, q̄}, {ū, p̄}) =
∫
�

w̄ · ρ (ū · ∇ū) d�

+
∫
�

∇s w̄ : σ t (ū, p̄) d� +
∫
�
q̄ ∇ · ū d�

+
∫
�

(
ū · ∇w̄ + ∇q̄

ρ

)
· [τMLM (ū, p̄)] d�

+
∫
�

ρτC∇ · w̄LC (ū) d� (7)

F ({w̄, q̄}) =
∫
�

w̄ · ρ g d� +
∫
�N

w̄ · h d A (8)

where τM and τC are the SUPG and PSPG-based stabiliza-
tion parameters. Their definitions and related discussions can
be found in [19–24]. Although the stabilized FEM formula-
tion is deployed to a steady RANS model in this paper, it
is noteworthy to mention that the formulation and its more
advanced versions, such as Arbitrary Lagrangian-Eulerian
technique (ALE-VMS) [25–32] and Space-Time (ST-VMS)
technique [33–37], have successfully been employed as large
eddy simulation (LES) models in simulating of a wide range
of challenging fluid dynamics and fluid-structure interaction
problems. These methods show significant advantages when
being deployed to flow problems with moving interfaces
and boundaries. Several recent validations and applications
include environmental flows [38–41], wind energy [28,42–
60], tidal energy [58,61–65], cavitation flows [66,67], super-
sonic flows [68], bio-mechanics [69–74], gas turbine [75–
77], and transportation engineering [23,78–82].

The velocity and pressure fields in Eq. 6 are solved in
a fully coupled fashion. The nonlinear equations are lin-
earized by theNewton’smethod. The resulting linear systems
are solved by a generalized minimal residual method with
a block preconditioning technique [83]. The formulation is
implemented in parallel for high-performance computing
environments using the Message Passing Interface (MPI).

3 Problem statement and data generation

The major objective of the developed ML framework is to
enable fast full-field pressure prediction and maximize the
value with a limited number of pressure sensors by optimiz-

Fig. 2 Setup and boundary conditions

ing their locations. To demonstrate the effectiveness of the
ML framework, we apply it to wind flows past a low-rise
building roof, which represents the most vulnerable struc-
tures to extreme wind events. Figure 1 shows the problem
considered in this paper, in which a flat roof of a low-rise
building with dimension of 3.35 m × 3.35 m × 1.5 m is
simulated with different wind flows in the direction of 45
degree. The reason for choosing 45 degree for study is that it
is the most critical angle for low-rise buildings. Past studies
show that this wind direction can generate high uplifts on flat
rectangular roofs due to conical vortices [84–87].

Following the American Society of Civil Engineers
(ASCE) 7–10 code, the roof is subjected to the following
wind flow profile obeying a power law, namely,

U z = u10(
z

10
)α (9)

where U z is the hourly mean wind speed, z is the height,
u10 is the mean hourly wind speed at z = 10 m height, α

is a constant related with the type of exposure influenced
by the characteristics of the ground roughness and surface
irregularities in the vicinity of the building.

We utilize the FEM-based RANS model presented in
Sect. 2 to generate simulation data to train and test the ML
framework. Figure 2 shows the simulation setup and bound-
ary conditions (BCs). The computational domain is a box
with dimensions of 35 m × 20 m × 8 m. At the inlet, a
strongBCusing thewind profile based on Eq. 9 is prescribed.
At the outlet, traction-free outflow BC is used. Slip and no-
penetration BC is utilized in the span-wise direction and on
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the top surface. At last, no-slip BC is utilized on the bottom
and building surfaces. The RANS simulations make use of
thin triangular prism elements to capture the boundary layers
around the roof and linear tetrahedron elements elsewhere.
For bluff structures, flow separation and vortex happen near
the structure and in the wake. To better capture the physics
without increasing cost, we do local refinements with three
different levels of mesh size in the computational domain.
The finest mesh size near the roof surface is 0.02 m. The
medium mesh size near a refined interior box is 0.2 m. At
last, the coarsest mesh size in the outer box is 2.0m. The final
CFD mesh consists of 3,819,670 nodes, 16,197,989 tetra-
hedron elements, and 2,000,488 prism elements. Figure 3
depicts several snapshots of the mesh. In the RANS simu-
lations, the density of the air is set to 1.225 kgm−3, and
dynamic viscosity is set to 1.8 × 10−5 kgm−1s−1.

We utilize the aboveCFDmodel to simulate 5×5 different
combinations of u10 and α for the training and testing of the
ML framework. These cases cover a wide range of wind
conditions in the US. Among these cases, 11 are used for
training the surrogate model, 11 cases are used for training
the optimizer of the pressure sensor placement, and 3 cases
are used for testing the MLmodel’s predictive accuracy. The
specification of these cases can be found in Fig. 4.

4 Physics-informedML framework for
pressure prediction and sensor placement
optimization

As shown in Fig. 5, the ML framework consists of a PINN-
derived surrogate predictive model for full-field pressure and
a neural network based optimizer for pressure sensor place-
ment. The objective of the ML framework is two-fold. The
first is to quickly and accurately recover the full-field pressure
profile by only using a small number of scattered pressure
measurements for a given inflow wind profile. The second is
to find the optimal placement of a fixed number of pressure
sensors, which delivers the most accurate full-field pressure
predictions for a set of inflow wind conditions. We should
mention that the novelty of our framework is not in the net-
work structure.. Instead, we aim to use a physics-informed
neural network to design a two-step model in order to build
a pressure surrogate model and a pressure sensor location
optimizer, which could be used in digital twins for civil
structures.

4.1 PINN-driven surrogate model

A physics-informed neural network (PINN) has been uti-
lized to develop the surrogate pressure model [88]. PINN
has shown strong capabilities in solving forward and inverse
problems involving nonlinear partial differential equations

and deriving surrogate and reduced-order models by mix-
ing labeled data and physical principles. In general, neu-
ral network is a computing architecture that is vaguely
inspired by the biological neural networks constituting ani-
mal brains [89]. Typical neural network architectures include
fully connected neural network (FCNN) [90], convolutional
neural network (CNN) [91], and recurrent neural network
(RNN) [92]. A neural network with more than one hid-
den layer is conventionally called a deep neural network,
whose function approximation capability increases with the
number of hidden layers and neurons [93]. Activation func-
tions are often used to introduce the non-linearity to the
NN [94]. Widely used activation functions in deep learn-
ing are tanh function, rectified linear unit (Relu) function,
and sigmoid function [95]. In this paper, the PINN employs a
fully connected deep neural network [90], where the neurons
of adjacent layers are fully connected, and a swish activation
function [96]. 8 hidden layers and 150 neurons per hidden
layers are used for the pressure surrogate model and the sen-
sor placement optimization model.

The PINN-based surrogate model, which is trained by
high-fidelity data and informed by the turbulence model,
constructs a full-field pressure field from scattered pressure
measurements, namely,

[x, Xs, P̃s] W∗,b∗
−−−→ [uNN (x), pNN (x)] (10)

where x is the spatial coordinates of interest, covering the
entire roof surface, Xs = {x1, x2, ..., xNs } are the locations
of the pressure sensors, with Ns denoting the number of
pressure sensors, P̃s = { p̃1, p̃2, ..., p̃Ns } are the measured
pressure at these locations. The output uNN (x) and pNN (x)

are the averaged velocity and full-field pressure predicted
by the surrogate model. One should note that the surrogate
model also outputs velocity, despite that the primary quantity
of interest (QoI) is pressure, and only pressure data is used
in training for the wind engineering problem considered in
this paper.W∗ and b∗ are theNN’sweights and biases, which
need to be learned by solving an optimizing problem, defined
as

W ∗, b∗ = argmin
W ,b

Rs (11)

where Rs is the objective function, which consists of the
following three components

Rs = λdataRdata + λpdeRpde + +λbcRbc (12)

whereRdata ,Rpde, andRbc represent the data-driven com-
ponent, physics-informed components in the interior domain
and boundary conditions, respectively. λdata , λpde, and λbc
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Fig. 3 The mesh utilized in the CFD simulations. Left: 3D view. Middle: x-y plane. Right: x-z plane

Fig. 4 Data generation: Wind
profiles considered for training
and testing of the ML
framework

Fig. 5 ML framework for
pressure prediction and sensor
placement optimization

are the correspondingweights for each component. The data-
driven component, Ldata , which measures the discrepancy
between the NN prediction and labeled measured pressure
from sensors, is defined as

Rdata =
Ns∑
s=1

[
pNN (xs, xs;W , b) − p̃s

]2 (13)

where p̃s denotes the sensor pressure data and Ns denotes
the number of sensors. Conventional off-the-shelf ML mod-

els only employ Rdata in the training process, which relies
on big data. Given the cost of data generation and the lim-
ited data available, the physics-informed components Rpde

and Rbc are added to the objective function to alleviate the
dependence on big-data. The physics are encoded into the
NN by penalizing the residuals of the PDEs and associated
BCs of the physical principles over a set of collocation points
in the interior (denoted by �) and a set of collocation points
on the boundary (denoted by ∂�). For the problem consid-
ered in this paper, the physics are the RANS equations with
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turbulence closure model defined in Eqs. 4 and 5 and bound-
ary conditions defined in Eq. 3. With the above definitions,
Rpde and Rbc are specified as

Rpde = ∣∣∣∣ LM [ uNN (x, xs;W , b), pNN (x, xs;W , b) ] ∣∣∣∣2
�

+ ∣∣∣∣ LC [ uNN (x, xs;W , b), pNN (x, xs;W , b) ] ∣∣∣∣2
�

(14)

Rbc = ∣∣∣∣ LBC [ uNN (x, xs;W , b), pNN (x, xs;W , b) ] ∣∣∣∣2
∂�

(15)

OnceW∗ and b∗ are determined, the output of uNN and pNN
can be easily achieved by a feed-forward evaluation of the
NN with high efficiency since it merely costs a few matrix
multiplications and vector additions.

4.2 Optimization of pressure sensor locations

In reality, a dense distribution of pressure sensors over
the entire structural surface is infeasible and uneconomic.
Besides, too many pressure sensors also introduce intru-
sive effects, leading to inaccurate pressure measurements.
Thus, an out-layer NN is designed to optimize pressure sen-
sor placement. The optimization algorithm aims to find the
optimal sensor placement for the surrogate model that recov-
ers the most accurate pressure profile over a wide range of
wind conditions from a given number of pressure sensors.
The sensor placement optimization is achieved by embed-
ding the learned surrogate model obtained from the previous
section in another data-driven neural network to minimize
the overall discrepancies between surrogate model predic-
tions and wind pressure by adjusting the sensor placement,
namely,

X∗
s = argmin

Xs
Lloc(Xs) (16)

where

Lloc(Xs) =
Nw∑
i=1

∣∣∣∣ pNN (x, Xs, P̃s;W∗, b∗) − p̂(x)
∣∣∣∣2
S

(17)

where S denotes the roof surface, pNN is the full-field pres-
sure prediction from the learned pressure surrogate model
and p̂(x) is the full-field prediction from the high-fidelity
simulation. Nw denotes the number of wind conditions used
for training the optimization algorithm. Once X∗

s is learned,
the full-field pressure predictionwith optimal pressure sensor
placement can be obtained by

p∗
s (x) = pNN (x, X∗

s , P̃s;W∗, b∗) (18)

4.2.1 Learning procedure

The PINN-based surrogate model and pressure sensor place-
ment optimizer are trained by minimizing the loss functions
defined in Eqs. 11 and 16. The minimization is executed
by the following procedures: (1) The coordinates of collo-
cation points and training data are substituted into the loss
functions. (2) Take the derivatives of the loss functions with
respect to the weight and bias in the neural network. (3)
Update the weight and bias by a gradient descent. Most
current machine learning frameworks solve the optimization
problem by a stochastic gradient descent (SGD) algorithm,
which is a stochastic approximation of the gradient descent
optimization [97]. SGD only uses a subset of collocation
points, randomly sampled from the input space at each iter-
ation, to calculate the directional gradient. Research shows
that SGDworks verywell to skip bad localminima.One issue
with SGD is the oscillation of gradient direction caused by
the random selection of sampled collocation points. In this
paper, the Adam method that combines adaptive learning
rate andmomentummethods is used to improve convergence
speed [98].

The PINN learning process needs the spatial and tempo-
ral derivatives with respect to the weight and bias, which can
be accurately and efficiently calculated by using automatic
differentiation (AD) [99]. The basic idea of AD is to use the
chain rule to back-propagate derivatives from the output layer
to the input layer since the connection between layers of a
neural network is analytically defined. Compared to numeri-
cal differentiation techniques (e.g., finite difference and finite
element), AD does not suffer from truncation or round-off
errors, resulting in much higher accuracy. AD has been gain-
ing increasing attention in the machine learning community
and has been implemented in many modern deep learn-
ing frameworks, such as TensorFlow [100], PyTorch [101],
Theano [102], and Caffe [103]. In this paper, the PINN-based
surrogate and sensor placement optimizer are implemented
in TensorFlow.

5 Applications

The performance of the proposed ML model depends on
the number of pressure sensors and their locations. In this
section, we investigate the effort of the number of pressure
sensors on the predictive accuracy of the surrogate model for
one specific wind condition. Based on the results, we then fix
the number of pressure sensors and optimize their locations
over various wind conditions.

123



Computational Mechanics (2023) 71:481–491 487

5.1 Effet of number of pressure sensors onmodeling
accuracy for one wind condition

We consider the effects of different numbers on the accuracy
of theMLmodel for particular wind conditions. 8, 16, and 32
sensors are chosen for investigation. To compare the accu-
racy of surrogate modeling using different sensor locations,
for each number of sensors, we manually select two loca-
tions (see Fig. 6). One is highly concentrated in the interior
(Placement 1), and another one is more uniformly distributed
(Placement 2).We use test case 2 (see Fig. 4) to learn the opti-
mized sensor placement for each number of pressure sensors.
After training, the surrogate model takes the pressure infor-
mation from sensor data as inputs to predict the full-field
pressure. The recovered pressure fields from the surrogate
model using Placement1, Placement 2, and the optimized
placement are comparedwith theFEMresult,which is treated
as the ground truth.

Figure 7 shows the comparisonof pressure prediction from
the surrogate model with different numbers of sensors and
sensor placements. The FEM results are plotted for compar-
ison. We quantify the relative predictive error based on the

Fig. 6 Two manually selected sensor placements. Placement 1: Con-
centrated distribution. Placement 2: Uniform distribution

Fig. 7 Pressure prediction with different number of sensors (8, 16, and
32)

difference from the FEM results and listed under each con-
tour. For each number of sensors, the accuracy rank (from low
to high) of sensor placements is Placement1, Placement2,
and the Optimized placement, indicating the effectiveness
and necessity of sensor location optimization. We find that,
for each sensor placement, the pressure surrogate model’s
accuracy increases with more sensors. With a small num-
ber of sensors (e.g., eight sensors), the accuracy of all the
placements is low. This means that more labeled data can
enhance the accuracy of the ML model. However, installing
more pressure sensors is not economically efficient. To have
a well-balance of accuracy and cost, we choose 16 sensors
in the next section and learn their optimal locations over a
wide range of wind conditions.

5.2 Learning optimal sensor placement for various
wind conditions

With a fixed number of pressure sensors (16 in this case), we
use the ML framework to learn their optimal placement that
leads to the best surrogate modeling accuracy over various
wind conditions. The FEM data from the 11 training wind
cases defined in Fig. 4 is used to train the surrogate model.
Then, another 11 cases are used to learn the sensor locations.
The remaining three cases are used to test the performance
of the learned optimal sensor placement.

Figure 8 shows the full-field pressure prediction of three
testing cases. We also plot the results of the surrogate model
using unoptimized sensor locations based on Placemen 1
and Placemen 2 (with 16 sensors) and the FEM results for
comparison. With highly concentrated sensor distribution
(Placement 1), the predictions from the pressure surrogate
model fail to match the FEM results. The relative error with
concentrated sensor distribution for Placement 1 ismore than
25% for all three cases. The surrogate model with Placement
1 fails to capture the large pressure suction near the two
front edges of the roof, which is widely seen in wind tun-

Fig. 8 Full-field pressure prediction of three testing cases
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Fig. 9 Pressure sensor location for Case 2. The predicted pressure is
obtained by substituting the pressure sensor locations into the surro-
gate model. Percentage represents the relative error of predictions with
respect to the corresponding FEM results

nel experiments and the FEM results here. With Placement
2, the predicted accuracy is improved due to the uniform
sensor distribution, indicating that the prediction error by
the surrogate model is highly related to the pressure sensor
locations. A biased sensor placement can lead to significant
prediction errors. We find that the optimized placement pro-
vides higher accuracy than Placement 1 and Placement2 for
all three cases, showing the value of the pressure placement
optimizer.

Togive somedetails of the optimization and showhowbet-
ter sensor location enhances predictive accuracy, we plot the
dynamic evolution of the pressure sensor placement during
the optimization process forCase 2 in Fig. 9. The correspond-
ing pressure prediction from the surrogate model using these
pressure sensor placements is plotted on the right. As the
optimization goes on and reaches the optimal state, sensor
placement gradually forms a symmetric configuration. Some
sensors move towards the front edge to capture big pres-
sure suction, and some move to the diagonal line to capture
positive pressure. This process shows that the ML learned
a sensor placement that tends to respect the symmetry of
the problem and the underline pressure distribution pattern.
Compared with the ground truth, one can see that the predic-
tive accuracy has significantly improved with the optimized
sensor placement compared with the initial randomly chosen
sensor placement.

6 Conclusion

This paper presented anML-based computational framework
for surrogatemodeling full-fieldwind pressure on civil struc-
tures and optimizing pressure sensor placement. The core of
the framework is based on physics-informed machine learn-
ing, which combines physical principles and labeled data to
train the ML models. We have shown the efficacy of the ML
framework by deploying it to a classical flat roof subjected
to single and multiple wind conditions. A careful assessment
of the framework’s performance was compared with stan-
dard FEM-based CFD simulations. We analyzed the effects
of sensor numbers and sensor locations. Results showed that
the ML framework maintains high accuracy and efficiency,
showing great potential in digital twin and structural health
monitoring applications. At this point, the framework can
only predict the mean pressure profile. Future work will
extend the framework to enable fast pressure prediction and
pressure sensor placement optimization for the mean pres-
sure and pressure fluctuation in a dynamic setting.
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Recurrent neural network based language model. In: Interspeech,
vol 2. Makuhari, pp 1045–1048

93. Liang S, Srikant R. Why deep neural networks for function
approximation? arXiv:1610.04161

94. Sibi P, Jones SA, Siddarth P (2013)Analysis of different activation
functions using back propagation neural networks. J Theor Appl
Inf Technol 47(3):1264–1268

95. Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve
neural network acousticmodels. In: Proceedings of ICML, vol 30,
p 3

96. Eger S, Youssef P, Gurevych I. Is it time to swish? comparing deep
learning activation functions across nlp tasks. arXiv:1901.02671

97. Ruder S. An overview of gradient descent optimization algo-
rithms. arXiv:1609.04747

98. Kingma DP, Ba J. Adam: a method for stochastic optimization.
arXiv:1412.6980

99. Griewank A et al (1989) On automatic differentiation. Math Pro-
gram Recent Dev Appl 6(6):83–107

100. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
Corrado GS, Davis A, Dean J, Devin M et al. Tensorflow: large-
scale machine learning on heterogeneous distributed systems.
arXiv:1603.04467

101. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al. Pytorch: an imper-
ative style, high-performance deep learning library. In: Advances
in neural information processing systems, vol 32

102. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Berg-
eron A, Bouchard N, Warde-Farley D, Bengio Y. Theano: new
features and speed improvements. arXiv:1211.5590

103. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,
Guadarrama S, Darrell T (2014) Caffe: convolutional architecture
for fast feature embedding. In: Proceedings of the 22nd ACM
international conference on Multimedia, pp 675–678

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1007/978-3-319-96469-0_8
https://doi.org/10.1007/978-3-319-96469-0_8
https://doi.org/10.1007/s00466-018-1642-1
https://doi.org/10.1007/s00466-018-1642-1
https://doi.org/10.1007/s00466-019-01746-8
https://doi.org/10.1007/s00466-019-01746-8
http://arxiv.org/abs/1503.02351
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1901.02671
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1211.5590

	Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement
	Abstract
	1 Introduction
	2 High-fidelity model
	3 Problem statement and data generation
	4 Physics-informed ML framework for pressure prediction and sensor placement optimization
	4.1 PINN-driven surrogate model
	4.2 Optimization of pressure sensor locations
	4.2.1 Learning procedure


	5 Applications
	5.1 Effet of number of pressure sensors on modeling accuracy for one wind condition
	5.2 Learning optimal sensor placement for various wind conditions

	6 Conclusion
	Acknowledgements
	References




