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Abstract

Solar-thermal conversion can mitigate the inadequate electrochemical
performance in extreme cold environment for aqueous electrochromic devices (AEDs).
However, the limited intrinsic absorptance of electrochromic materials impedes a
satisfying solar-thermal conversion. Herein, bioinspired by the Paradisaeidae’s super
black feathers, multiscale hierarchical structure is purposely made to compose of WO;.
x hanowires (WNWs) and silver nanowires (AgNWs), where WNWs are grown on
AgNWs in different orientations (denoted as WAg). Our ray tracing simulation reveals
its underlying absorption mechanism, demonstrating both an increased optical path and
a concentrated energy distribution. Comparably, the WAg-AED exhibits much
enhanced absorption (87.0 vs. 68.5 % across the entire solar spectrum) and a broader
surface temperature change (51.2 vs. 39.7 °C within 8 minutes) under 1 solar
illumination. This leads to a rapid recovery of electrochromic/electrochemical
performance even conducted at -20 °C. Notably, upon irradiation for 12 minutes, the
areal capacities of WAg-AED at 0.5 mA cm? increase by 3.8 and 1.7 times, when
compared to the device operating at -20 °C and room temperature, respectively. The
WAg-AED establishes a close connection between the photo-thermal conversion and
electrochemistry, proving a new pathway in the development of sustainable electronics.

Keywords Multiscale hierarchical structure, Bioinspired pathway, Aqueous

electrochromic device, Solar-thermal conversion
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1 Introduction

Owing to the enhanced safety and electrochemical kinetics, aqueous electrochromic
devices (AEDs) have been widely studied for integration into internet of things (IoT),
wearable electronics, and sensors.[1-3] Nonetheless, AEDs also encounter challenges
in association with the sluggish ionic mobility and electrolyte freezing at sub-zero
temperatures, as well as reduced overall lifespan.[4-6] Numerous efforts have been
made to enhance the environmental endurance for AEDs. Improving the durability of
electrolyte is one of a prominent strategy. For example, engineering an eutectic with
organics effectively lowers the freezing point of electrolyte.[7] Besides, raising the
concentration of inorganic can widen the operating temperature range, known as the
“water-in-salt electrolyte”.[8,9] However, various kinetic issues in the interior and/or
surface of electrodes have not been addressed.[10] Low-temperature conditions impose
substantial issues of low kinetics for the chemical reactions, which is typically observed
during the charge and discharge even at room temperature, due to insufficient thermal
kinetic energy provided by the surrounding environment.[11]

In this context, solar-thermal conversion is proposed as a cost-effective thermal
management to maintain the temperature in a rational range.[12,13] Initially, this
concept is applied to elevate the surface temperature of supercapacitors, with typical
electrode materials such as graphene,[14] Ni/Co-layered double hydroxide,[15] and
spinel-type Cu; sMn; 504, [16]. It is noteworthy that these materials possess exceptional
absorption (>90 %) over the entire solar spectrum but lack electrochromic effects. To
the best of our knowledge, this thermal management strategy has not been reported in
AEDs. Only one pioneering study has utilized the electrochromic effect of PBA/NiO
as the electrode to enhance the local surface temperature of supercapacitors. However,
it achieves only an undesired accelerated temperature rise (>30 min) due to the low
absorption across the entire solar spectrum (<60 %).[17] According to the Beer-
Lambert law (I(x) = [pe~%*),[18,19] the light energy I(x) decades exponentially
during the refraction process, where x is the optical path length, a is the absorption
coefficient. Hence, developing an ideal structure to extend the optical path length
emerges as an effective strategy to enhance solar-thermal conversion.

Through millions of years of natural selection, one species of birds of paradise
(Aves: Paradisaeidae) have developed strikingly black plumage patches that are
significantly darker than usual black plumage observed in closely related species (Fig.
1a-1b).[20] This structural absorption of “super black™ is achieved by hierarchical
structures featuring microscale spikes along the margins. The barbule arrays in feathers
exhibit dimensions with 200-400 um depth and 5-30 um width, whereas the cavities
along the barbule margins are on a smaller scale of less than 5 um (Fig. 1¢-1d). As a
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result, this multi-scale hierarchical structure renders multi-reflection of light and
increases optical path.[21-24] A similar mechanism has also been observed in both
black snake scales and butterfly scales to keep their body warm in cold weathers.[25-
28]

Herein, solar-thermal conversion is proposed to address the undesirable
electrochromic performance in extreme-cold environments through enhancing multi-
reflection and extending optical path (Fig. 1e). A bio-inspired multi-scale hierarchical
structure (denoted as WAg, Fig. 1f) is purposely designed, comprising WO;
nanowires (WNWs) with a mean diameter of 3-5 nm and length of 50-70 nm), and
silver nanowires (AgNWs) with a mean diameter of 30-70 nm and length of 30-40 um.
Incident light enters via either Path 1 or Path 2 (Fig. S1), multiple reflections occur at
the surface either AgNWs or WNWs, as if light becomes trapped in this structure.[21]
Our AED features a multilayer configuration consisting of ITO-
PET/WAg/ZnCl,/Zn/ITO-PET, with WAg serving as the cathode (Fig. 1g).
Consequently, this structure enables WAg-AED to rapidly recover to its initial
performance at room temperature within 8§ minutes even at -20 °C. Additionally, in
contrast to those mainstream energy storage devices characterized by constant
absorption, such as batteries and supercapacitors, we envision that AEDs can also
mitigate the safety risks and uncomfortable wearability associated with abundant
sunlight, owing to their tunable absorption capability. By establishing a direct
relationship between the photo-thermal conversion and electrochemistry, we aim to
expand the applications of AED in a sustainable manner.
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Fig. 1 Examples of birds with normal and super-black feathers in nature (a-d), along with the
concept of bioinspired multiscale hierarchical structures for solar-thermal conversion (e-g).
Digital photographs of Melampitta lugubris (a,) and Lycocorax pyrrhopterus (a;) with normal black
feathers, and Parotia wahnesi (b)) and Astrapia stephaniae (b;) with super black feathers.
Corresponding SEM images of normal black feathers (c) and super black feathers (d). Reproduced
with permission.[20] Copyright 2018, Springer Nature. (e) Schematic illustration of concept of
solar-thermal conversion at low temperature. (f) Schematic illustration of WAg electrode with
strong light scattering and multi-reflection. (g) Device configuration of WAg-AED.

2 Results and Discussion

2.1 Simulation on Structural Absorption Mechanism

The structural absorption mechanism of WAg is simulated by ray tracing
techniques.[29,30] AgNW and WNW are represented as cylindrical structures, while
the incident light is treated as parallel rays. Comprehensive information regarding the
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modeling details can be found in the supplementary material (Section 1.8). The optical
paths at visible wavelength (700 nm) and near-infrared wavelength (1500 nm) for WAg
are simulated in Fig. 2. The average energy absorption rates at 700 nm and 1500 nm
with AgNWs are 6.3 % and 5.6 % higher, respectively, compared to those without
AgNWs (Fig. 2a-2b and Fig. S2a-S2b). The improvement is attributed to the greater
number of light intersections in WAg, as well as the longer optical path (Fig. 2¢-2d and
Fig. S2¢-S2d). Typically, the diameter of AgNWs is significantly larger than that of
WNW, which increases the packing ratio of WAg and enhances the light-matter
interactions between a single ray and the object. Furthermore, the highly reflective
nature of AgNWs results in at least 90 % reflection of incident light. AgNWs are
situated beneath the WNWSs, thereby mitigating initial light reflection. This
arrangement increases the likelihood of ray-WNW intersections, thereby significantly
extending the optical path. The corresponding energy distributions for WAg and WNW
conducted at 700 nm and 1500 nm provide more evidence (Fig. 2e-2f and Fig. S2e-
S2f). The color point represents the absorption location where the incident light occurs,
while the depth of color indicates the intensity of absorption. The heat distributions in
the colored WAg are more intense than those in the colored WNWs, especially around
the interface between AgNWs and WNW. Therefore, our WAg effectively “traps” the
light and energy within its internal structure, further enhancing the solar-thermal
conversion.
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Fig. 2 Ray tracing simulation of absorption mechanism of WAg-AED conducted at 700 and
1500 nm. Histogram of absorption rates of each light path for the colored WAg-AED conducted (a)
at 700 nm and (b) at 1500 nm. Simulated optical path of the colored WAg-AED conducted (c) at
700 nm and (d) at 1500 nm. Simulated heat distribution of the colored WAg-AED conducted (e) at
700 nm and (f) at 1500 nm. The color bar value corresponds to the relative ratio of ray absorption,
indicating the proportion of current ray energy to the initial ray energy. A value of 1.0 signifies
complete absorption of all energy.
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2.2 Demonstration of Solar-thermal Conversion of WAg-AED

The specific phase and morphology characterizations of WAg are presented in Fig. S3-
S5. WNWs and AgNWs are synthesized using our previous methods.[1,31,32]
Typically, WAg structure, with WNWs (with a mean diameter of 3-5 nm and length of
50-70 nm) randomly attached to AgNWs (with a mean diameter of 30-70 nm and length
of 30-40 um) in different orientations, is illustrated in Fig. 3a-3¢ and Fig. S5. The
significant size differences and the arrangements of AgNWs and WNWs induce robust
light scattering and extend the length of light-matter interaction, thereby significantly
enhancing the collection of incident light and raise the temperature.[33-36] Fig. 3d
shows the thickness of each layer, including the WNW layer, the AgNWs layer and
ITO conductive layer.

Experimentally, in-situ absorptance spectra of the WAg and WNWs electrode in
colored states are shown in Fig. 3e. The colored WAg demonstrates an absorption of
87.0 % ranging from 2500 nm to 380 nm (Equation S1 in supporting information),
surpassing the absorption of the colored WNWs (68.5 %), and achieving comparable
absorption of typical supercapacitor electrode materials (55.2 %-91.7 %, Table S1).
This enhancement is consistent with our ray tracing simulations.
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Fig. 3 Demonstration of solar thermal conversion for AED at low temperature. (a-b) SEM
images of the WAg electrode with multiscale hierarchical structure. (c) the corresponding EDS
results. (d) Cross-section SEM image of the WAg film. (e) The entire-solar-spectrum absorptance
of the WAg and the WNWs. (f) Infrared images of WAg-AED and (g) WNW-AED conducted at -
20 °C with different irradiation time.

To evaluate the photo-thermal capability of WAg-AED for potential practical
applications, the demonstrations are conducted utilizing solar light. An integrated
testing system is custom-built (Fig. S6). The test is conducted at -20 °C under 1 solar
illumination. As a result, the surface temperature swiftly recovers from -3.7 °C to
33.7 °C within only 5 mins (Fig. 3f), while the WNW-AED exhibits a lower
temperature of 20.6 °C (Fig. 3g). With the irradiation time increasing to 8 mins, the
surface temperature of WAg-AED reaches 47.5 °C, surpassing both WNW-AED
(36.0 °C) and the temperature reported in the NiO/PB work(<30 °C ).[17] The
relationships between the surface temperature and irradiation time are summarized in
Fig. 4a. The rate of temperature increase in WAg-AED is consistently higher than that
in WNW-AED, indicating that the WAg structure possesses superior photothermal
conversion capabilities.

A comprehensive  analysis of the relationship  between  the
electrochromic/electrochemical performances of the WAg-AED and the irradiation
time is conducted at -20 °C. The applied potential window ranges from +0.2 V to +1.2
V, with an interval time of 20 s. As shown in Fig. 4b, the device experiences a
significant deterioration at -20 °C in optical contrast (27.6 % vs. 55.2 %) and switching
speed (10/13.5 s vs. 4.5/6.5 s), as compared to its performance at room temperature.
The specific performance indicators are summarized in Table S2. To better understand
the recover capability under solar irradiation, we normalize the optical contrast and
switching speed, where the green dotted line represents the performance of AED
conducted at room temperature (Fig. 4c and 4d). With prolonged irradiation,
electrochromic performances gradually restore to their initial states. Notably, WAg-
AED fully restores its original optical contrast and switching speed after an 8-min
irradiation period, whereas WNW-AED fails to achieve such restoration even after 12
mins of irradiation (Fig. S7 and Table S3). Similar results are observed in coloration
efficiency (Fig. 4e and Fig. S8). The values are calculated using Equation S2 in
supporting information. As the irradiation time increases, the coloration efficiencies of
WAg-AED rise from 32.0 to 98.7 cm?C-!, eventually surpassing the performance at
room temperature (91.4 cm?C-!). Fig. 4f shows that the recovery speed of WAg-AED
is more rapid than that of WNW-AED, suggesting the better solar-thermal conversion.
Interestingly, while the devices show stable cycling performance at room temperature,
they fail to operate at -20 °C after 100 cycles (Fig. S9-S10). However, upon irradiation,
they can endure more than 100 cycles (Fig. 4g). Notably, as the irradiation time extends
to 12 minutes, the electrochromic performance of our AED surpasses that achieved
under room temperature conditions (Table S2-S3). This achievement also demonstrates
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a competitive advantage over previously reported AEDs (Table S4).[37-43]
Furthermore, a common observation for the device in low temperature environments is
the occurrence of uneven color changes, accompanied by the emergence of a foggy
phenomenon on the device surface (Fig. S11a-S11b). However, the WAg-AED device,
even in large-size configuration (10 cm % 15 cm), exhibits a stable switching process
facilitated by solar irradiation (Fig. S11¢c-S11d).

In addition, galvanostatic charge-discharge (GCD) curves performed with
irradiation time are presented in Fig. 4h. WAg-AED exhibits poor areal capacity of
36.7 mAh m? at the current density of 0.5 mA cm™ in cold environments, while the
capacity gradually restores to initial state under solar irradiation. The normalized
capacity is shown in Fig. 4i. As the irradiation time exceeds 8 minutes, the capacities
of WAg-AED surpass those achieved at room temperature. Within a 12-minute
irradiation period, the capacity of the WAg-AED increases by 1.7 and 3.8 times,
compared to the initial performance conducted at room temperature and -20 °C,
respectively (139.3 vs. 82.7 vs. 36.7 mAh m-?). Significantly, WAg-AED also exhibits
an outstanding areal capacity after irradiation in the electrochromic device/battery with
an identical configuration (77.1 mAh m2 at 0.2 A m2,[44] 101.1 mAh m> at 0.25 mA
cm2,[9] 106.7 mAh m~ at 0.25 mA cm2,[45] 126.3 mAh m~ at 0.25 mA cm2,[2] 127.8
mAh m? at 0.06 mA cm [46]). This significant improvement effectively solves the
dilemma of poor electrochemical performance typically observed in electronics
operating at low temperatures. Although similar trends are also observed in WNWs-
AED, the overall restoration rate is notably lower than that observed in WAg-AED
(Fig. S12).
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Fig. 4 Electrochromic and electrochemical performances of the WAg-AED conducted at -
20 °C under 1 solar illumination irradiation. (a) The relationships between irradiation time and
temperature of WAg-AED and WNW-AED conducted at -20 °C. (b) In-situ optical modulation (633
nm) of WAg-AED conducted at -20 °C with different irradiation time. (c) Normalized optical
contrast of WAg-AED and WNW-AED conducted at -20 °C with different irradiation time.
Normalized optical contrast is the ratio of optical contrast under varied irradiation time to optical
contrast at room temperature. (d) Normalized switching speed of WAg-AED and WNW-AED
conducted at -20 °C with different irradiation time. Normalized switching time is the ratio of
switching time at room temperature to switching time under varied irradiation time. (e) Coloration
efficiency of WAg-AED conducted at -20 °C with different irradiation time. (f) Normalized
coloration efficiency of WAg-AED and WNW-AED conducted at -20 °C with different irradiation
time. Normalized coloration efficiency is the ratio of coloration efficiency under varied irradiation
time to coloration efficiency at room temperature. (g) Cycling performance of WAg-AED after
irradiation. (h) Galvanostatic charge/discharge curves of WAg-AED conducted at -20 °C with
different irradiation time. (i) Normalized capacity of WAg-AED and WNW-AED conducted at -
20 °C with different irradiation time. Normalized capacity is the ratio of capacity under varied

irradiation time to capacity at room temperature.

2.3 Envisioning AEDs and Other Energy Storage Devices for Harsh Environment
Applications

In future, we envision a trend towards wearable electronics equipped with self-
temperature control, allowing for optimal functionality in extreme temperatures. This
involves efficient solar energy absorption in cold environments while preventing device
overheating in warmer conditions (Fig. 5). The superior photo-thermal conversion
capability inherent in mainstream energy storage devices, such as batteries and
supercapacitors, is well-suited for cold environments but less applicable in warmer
settings. In contrast to those devices with constant absorption, the distinctive advantage
of AEDs lies in their tunable absorption capability. For example, transition metal oxide
(TMO) materials, such as WOs3, exhibit different corresponding to their varying valence
states.[47,48] Comparative analysis of AED and other energy storage devices are
discussed in Fig. S13-S15. Typically, there is a substantial difference in absorptance of
AED between the colored state and the bleached state, decreasing from 87 % to 20.4 %
(Fig. S13 and Table S5). Fig. S14 displays the infrared images of fully bleached of
WAg-AED simulated in an outdoor environment with abundant sunlight. Surprisingly,
the temperature difference between WAg-AED and supercapacitors can reach 15.1°C,
while the temperature difference between WAg-AED and lithium-ion battery can reach
7.8 °C, within only 150 s under 1 solar illumination. The exceedingly low absorption
coefficients in the bleached state contribute to a reduced intensity of energy
distributions (Fig. S16 and S17). In addition, our AED can function properly under high
temperatures (Fig. S18). The electrochromic performances of WAg-AED at 40 °C are
comparable to those achieved at room temperature, with a slight difference in optical
modulation (52.8 % wvs. 55.2 %). Impressively, the switching speeds exhibit
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improvements at higher temperatures (t.: 4 vs. 4.5 s, t,: 5 vs. 6.5 s). This trend is also
observed with WNW-AED (Fig. S19 and Table S6). This development decreases the
safety risks and uncomfortable wearability as well as prevents diminished discharge
performance resulting from the high temperatures.

Thus, even in scenarios such as mountain climbing or skiing without direct
sunlight at night, the device can effectively recover its energy storage capacity by a
simulated light source. On the other hand, in situations with abundant outdoor sunlight,
conventional wearable electronics can absorb a significant amount of heat when fully
charged, reducing the level of comfort and posing risks of thermal runway. Notably,
our WAg-AED with dynamic absorption capability allows for significant reflection of
incident light and dissipation of excess heat, mitigating rapid temperature rises.

fI ‘e’ ! Tunable Solar-thermal Conversion
Al
:0  Low-temperature High-temperature

Colored State with High Absorptance, Bleached State with Low Absorptance

Quick recovery = % Dissipating the heat
=
=

Figure S. Blueprint of wearable AEDs with self-controlled temperature in harsh conditions.
In low temperature, high absorptance and strong photo-thermal conversion capability result in a
rapid temperature recovery when exposed to solar illumination. This, in turn, enhances the
restoration of electrochromic and electrochemical performance. In high temperature, low
absorptance mitigate rapid temperature rises under intense outdoor sunlight, thereby reducing the
safety risks and improving wearable comfortability.

3 Conclusion
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In summary, bioinspired by the Paradisaeidae’s super black feathers, multiscale
hierarchical structures consisting of WAg electrode with much enhanced solar-thermal
conversion are purposely designed to address the challenges of sluggish kinetics in cold
environments. Our ray tracing simulations confirm the absorption mechanism of WAg-
AED, revealing the underlying optical pathways and heat distribution. As a result, the
designed structures are shown to exhibit the high absorptance of 87.0 % over the whole
solar spectrum (ranging from 2500 nm to 380 nm), showing their effectiveness in
solving the intrinsic absorption limitations of electrochromic materials. Their
electrochemical performance rapidly restores within a brief 8-minute duration, even at
-20 °C, under 1 solar illumination. Notably, upon irradiation for 12 mins, the capacities
of WAg-AED increase by 3.8 and 1.7 times, compared to the device operated at -20 °C
and room temperature, respectively. In addition, compared to the competing energy
storge devices (e.g., battery and supercapacitor) with constant absorption, aqueous
electrochromic devices with tunable absorption have their potential for applications in
wearable electronics, particularly in adapting to extreme cold or heat conditions.
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Solar-thermal conversion, as a novel and cost-effective method, was proposed to
mitigate undesirable electrochromic performance in low-temperature conditions.

Inspired by the super black feathers of the Paradisaeidae, a multiscale hierarchical
structure was purposely designed to enhance the solar-thermal conversion.

A high absorption of 87 % over the entire solar spectrum was achieved, along with
rapid recovery of electrochromic performance at -20°C within merely 8 mins.

The absorption mechanism and optical path were thoroughly elucidated using ray-
tracing simulations.



