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In recent years, isogeometric analysis (IGA) has attracted significant attention from the
computational mechanics community due to its ability to integrate design and analy-

sis. Besides, IGA is also a higher-order discretization technique for solving partial dif-

ferential equations, showing high approximation capability per degree of freedom. In
this paper, we extend the application realm of IGA to particle-laden flows based on

Eulerian–Eulerian description that couples Navier–Stokes equations with a density trans-

port equation through a Boussinesq approximation. The coupled systems are solved by
using quadratic non-uniform rational B-spline (NURBS) functions and a recently devel-

oped residual-based variational multiscale (VMS) formulation, which introduces coupling

between the fine velocity scales and density equation residuals. We deploy the proposed
approach to perform large-eddy simulations (LES) of dilute particle-laden flows over a

flat surface at Reynolds number = 10,000. We compare the simulation results against

direct numerical simulation (DNS) results from the literature. We find that combining
VMS and IGA, the proposed approach enables accurate prediction of a wide range of

flow/particle statistics with a relatively lower mesh resolution.

Keywords: Isogeometric analysis; large-eddy simulation; particle-laden flows.

AMS Subject Classification: 22E46, 53C35, 57S20

1. Introduction

Particle-laden flows are ubiquitous in many natural and engineering systems. Rep-

resentative examples include volcano eruptions, oil spills, snow avalanches, and

‡Corresponding author.
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powder dynamics in additive manufacturing processes. In recent years, computa-

tional fluid dynamics has been playing a critical role in revealing the fundamen-

tal physics of particle-laden flows.37, 38, 72, 115 One critical issue of simulations of

particle-laden flows is how to handle the particle motions in the carrying fluid.

There are two common approaches.113 The first one is the Eulerian–Lagrangian

approach, in which the carrying fluid is modeled by an Eulerian description, while

the particle motion is explicitly tracked by a Lagrangian description (e.g. discrete

element method). In particular, early work in the late 1990s48–51 applied Deforming-

Spatial-Domain/Stabilized Space–Time110 to simulate fluid–particle interactions in

the sedimentation process of spherical particles in a liquid tube. The approach, now

called as Space–Time SUPS (ST–SUPS) because of its stabilization components

Streamline-Upwind/Petrov–Galerkin (SUPG)29 and Pressure-Stabilizing/Petrov–

Galerkin (PSPG),110 is an effective technique for a wide range of flow problems

involving moving boundaries and interfaces. For the fluid–particle interaction, the

ST–SUPS in these referred papers uses moving meshes to explicitly represent the

falling particles, leading to exceptional accuracy of particle dynamics and their

interaction with the surrounding flows. However, a problem with the Eulerian–

Lagrangian approach is that it may incur a prohibitive computational cost once the

number of particles becomes large. In particular, in some geotechnical or additive

manufacturing applications, the number of particles can exceed 105. This issue con-

fines the applications of the Eulerian–Lagrangian approach to particle-laden flows

with large particle sizes and high particle mass fractions.31, 39, 68, 85, 114

The second approach is the Eulerian–Eulerian approach, in which both the

carrying fluid and the particles are handled in Eulerian description. This approach

is suitable for particle-laden flows with low particle mass fractions. In this approach,

the particle behaves essentially like a second fluid. Although the Eulerian–Eulerian

approach possesses lower accuracy since particles are not handled explicitly, its low

computational cost makes this approach popular in many problems with a large

number of particles and low particle mass fractions55, 69, 81.

The past 17 years have witnessed the boom of applications of isogeometric anal-

ysis (IGA) in various engineering fields since its inception. IGA, originally proposed

in,45 aims to automate the design-through-analysis pipeline by directly employing

the spline functions that describe computer-aided design (CAD) models in engi-

neering analysis. From the perspective of pure analysis, IGA possesses higher accu-

racy than the standard finite element-based counterpart, attributed to the higher

approximation ability of smoother spline basis functions. This superior approxi-

mation property enables IGA to tackle mechanics problems involving higher-order

differential operators and achieve high accuracy with fewer degrees of freedom.

Although successful applications of IGA to many fluid, solid,

and structural mechanics problems can be found in the litera-

ture,1–3, 7, 10–14, 16, 19, 20, 26–28, 40–42, 53, 56, 62, 65, 70, 71, 78, 101–106, 109, 112, 121, 122 its

application to particle-laden flows hasn’t been explored yet. This paper presents

a numerical formulation by combining the IGA discretization with a modi-
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fied residual-based variational multiscale (RBVMS) formulation to simulate high

Reynolds number particle-laden flows under an Eulerian–Eulerian description. The

formulation employs a two-way coupled Navier–Stokes and convection–diffusion

equations through the Boussinesq approximation. Taking advantage of IGA’s high

approximation accuracy and VMS’s capability in capturing multiscale phenomena,

the formulation achieves effective large-eddy simulations of turbulent particle-laden

flows. Compared with the original RBVMS in,9 the modified RBVMS used in this

paper, which couples the fine-scale velocity and density equation residuals, shows

enhanced performance in capturing critical statistics in coupled Eulerian–Eulerian

systems (e.g. density or temperature-stratified turbulent flows120). We utilize the

VMS–IGA method to simulate particle-laden flows in the lock-exchange configu-

ration with a horizontal bottom surface. We compare the VMS–IGA results with

available DNS results to show how the higher smooth IGA basis functions, combined

with RBVMS, obtain accurate predictions with a mesh with lower resolution.

This paper is arranged as follows. In Sec. 2, the governing equations of particle-

laden flows in the Eulerian–Eulerian description are presented. The basics of IGA

and RBVMS are briefly given in Sec. 3. We present the computational setup in

Sec. 4. The simulation results are presented and discussed in Sec. 5. Section 6

summarizes the conclusions.

2. Governing Equations

The Eulerian–Eulerian description adopted in this paper uses a Boussinesq approx-

imation, assuming the particle diameter and the particle Stokes number are suf-

ficiently small in the flow. The density is treated as constant in the momentum

equations augmented with a body forcing term. Instead of tracking individual par-

ticles in a Lagrangian fashion, a convection–diffusion equation is utilized to model

the concentration of particles. With the above assumptions, the governing equa-

tions of particle-laden flows consist of momentum conservation, mass conservation,

and a scalar transport equation. The dimensionless form of governing equations is

given as follows:

∂u

∂t
+ u · ∇u+∇p− 1

Re
∇2u− ρeg = 0, (2.1)

∇ · u = 0, (2.2)

∂ρ

∂t
+ up · ∇ρ−

1

Sc Re
∇2ρ = 0, (2.3)

where t, u, up, p, and ρ are the dimensionless time, fluid velocity, particle convective

velocity, pressure, and density, respectively. They are defined based on dimensional

time t̃, fluid velocity ũ, particle convective velocity ũp, pressure p̃, and density ρ̃

as follows:

u =
ũ

ũb
, up =

ũp
ũb
, p =

p̃

ρ̃cũ2
b

, ρ =
ρ̃− ρ̃l
ρ̃h − ρ̃l

, t =
2t̃ũb

H̃
, (2.4)
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where ũb =

√
g̃′H̃

2 is the buoyancy velocity, g̃′ = g̃ ρ̃h−ρ̃lρ̃c
is the reduced gravitational

acceleration magnitude, in which ρ̃c represents the carrier fluid density, g̃ is the

gravity acceleration magnitude, and H̃ is the height of the domain. ρ̃h and ρ̃l
are densities of heavy and light fluids, respectively. ũp is the dimensional particle

convective velocity, which is obtained by superimposing the fluid velocity ũ and

particle settling velocity ũs

ũp = ũ+ ũseg, (2.5)

where eg is the unit vector in the gravity direction. The settling velocity ũs is given

by Stokes law as

ũs =
(ρ̃p − ρ̃c)g̃d̃2

p

18µ̃
, (2.6)

where µ̃ is the dynamic viscosity, ρ̃p is the particle density, and d̃p is the particle

diameter. Here, we also have dimensionless setting velocity as us = ũs

ũb
.

The particle-laden flows governed by Eqs. (2.1)–(2.3) can be characterized by

Reynolds number Re and Schmidt number Sc, which are defined as

Re =
ũbH̃

2ν̃
, (2.7)

Sc =
ν̃

α̃
, (2.8)

where ν̃ is the kinematic viscosity and α̃ is the molecular diffusivity.

3. Numerical Formulation

3.1. Isogeometric analysis

The basics of IGA are presented in this section. IGA employs B-splines and Non-

uniform rational B-splines (NURBS) that are used in CAD descriptions of geometric

models as the basis functions in engineering analysis. These basis functions have

higher-order continuity and other better properties than Lagrangian polynomials.

B-splines can be expressed by a linear combination of n basis functions of order

p and the associated n control points. The functions are defined upon a knot vec-

tor, a non-decreasing sequence in parametric space denoted by {ξ1, ξ2, . . . , ξn+p−1},
where ξi is the ith knot, n is the number of B-spline basis functions, and p is the

polynomial order. The interval [ξi, ξi+p+1] is called a knot span. A B-spline basis is

C∞-continuous inside a knot span and Cp−m-continuous at knots with multiplicity

m ≤ p. The construction of higher-order B-spline functions Ni,p is based on the

Cox-de Boor recursion process, starting with piecewise-constant functions (p = 0)

on each knot span, namely,

Ni,0(ξ) =

{
1 if ξi < ξ ≤ ξi+1,

0 otherwise.
(3.1)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
22

.3
2:

25
29

-2
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

O
U

T
H

E
A

ST
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/0
5/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



January 7, 2023 8:58 WSPC/103-M3AS 2250060

Isogeometric LES of turbulent particle-laden flows 2533

For p > 0, the Cox-de Boor recursion process leads to

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3.2)

NURBS are projections of B-splines from Rd+1 to Rd, leading to piece-wise

rational functions. For each B-spline basis function, its NURBS counterpart Ri,p is

given as

Ri,p(ξ) =
Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

, (3.3)

where wî is a positive weight for the îth B-spline function. NURBS basis functions

in higher dimensions, such as 3D, are defined by introducing knot vectors in every

dimension and employing a tensor-product construction as

Rp,q,ri,j,k =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)∑n

î=1

∑m
ĵ=1

∑l
k̂=1Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wîĵk̂

. (3.4)

NURBS can represents curves, surfaces, and volumes. A NURBS curve C(ξ) is

obtained by taking a linear combination of univariate NURBS basis functions from

Eq. (3.3) and control points coordinates Bi as

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi. (3.5)

Similarly, a NURBS volume patch V (ξ, η, ζ) is constructed analogously as

V (ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Bi,j,k. (3.6)

3.2. Residual-based variational multiscale formulation

We employ a RBMVS formulation to solve the coupled Navier–Stokes and density

equations. The details are briefly presented as follows. Let V denote the set of

discrete trial functions for the velocity, pressure, and density unknowns {u, p, ρ}
and W denote linear momentum, continuity, and density equations {w, q, η}. The

semi-discrete RBVMS formulation is stated as: Find {u, p, ρ} ∈ V , such that

∀{w, q, η} ∈W ,

BG({w, q, η}, {u, p, ρ}) + BV ({w, q, η}, {u, p, ρ}) = F({w, q, η}), (3.7)

where BG and BV are the Galerkin formulation of the coupled Navier–Stokes and

density equations and fine-scale terms stemming from RBVMS. They are defined as

BG({w, q, η}, {u, p, ρ}) =

(
w,

∂u

∂t

)
Ω

+ (w,u · ∇u)Ω − (w, ρeg)Ω − (∇w, pI)Ω

+

(
∇w, 1

Re
∇u
)

Ω

+ (q,∇ · u)Ω +

(
η,
∂ρ

∂t

)
Ω

+ (η,up · ∇ρ)Ω +

(
∇η, 1

Sc Re
∇ρ
)

Ω

(3.8)
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and

BV ({u, p, ρ}, {w, q, η}) = −(u · ∇w +∇q,u′)Ω + (w,u′ · ∇u)Ω

− (∇w,u′ ⊗ u′)Ω − (∇ ·w, p′)Ω

− (u · ∇η, ρ′)Ω (3.9)

where ( , )A represents the L2 inner product over domain A.

F ({w, q, η}) is defined as

F({w, q, η}) = (w,h)Γf
+ (η,Q)Γd

(3.10)

where h is the traction on Γf , and Q is the density flux on Γd.

In Eq. (3.9), u′, p′, and ρ′ are the fine-scale velocity, pressure, and density fields,

which are modeled based on the residuals of the strong form momentum, continuity,

and density equations, and given byu
′

ρ′

p′

 = −

[
τ 4×4

τc

]rmrρ
rc

, (3.11)

where rm, rρ, and rc are the residuals of the momentum, density and continuity

equations, respectively, given as

rm =
∂u

∂t
+ u · ∇u+∇p− 1

Re
∇2u− ρeg, (3.12)

rc = ∇ · u, (3.13)

rρ =
∂ρ

∂t
+ up · ∇ρ−

1

Sc Re
∇2ρ (3.14)

[τ ]4×4 and τc and are the fine-scale parameters. For more discussions, readers are

referred to the work in.32, 115, 120 Here, we skip the derivation and directly present

their definitions. [τ ]4×4 is defined as

[τ ]4×4 =


τm

τm

τm τuρ

τρ

, (3.15)

where τm, τρ, and τuρ are defined as

τm =

(
4

∆t2
+ u ·Gu+

CI
Re2

G : G

)−1/2

, (3.16)

τρ =

(
4

∆t2
+ up ·Gup +

CI
S2

c Re2
G : G

)−1/2

, (3.17)

τuρ = − 4

∆t(τ−1
m τ−2

ρ + τ−2
m τ−1

ρ )
, (3.18)
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where ∆t is the time step, G is the element mesh metric tensor, given by G =
∂ξ
∂x ( ∂ξ∂x )T , where ∂ξ

∂x is the Jacobian matrix of the mapping between the parametric

element and its corresponding physical counterpart, and CI is a positive constant.

At last, we assume that the pressure fine-scale parameter retains its usual defi-

nition,9 namely,

τc =
1

τmtrG
, (3.19)

where tr is the trace operation.

Remark. The above formulation features a modified RBVMS, in which the con-

struction of velocity fine scales accounts for the coupling of the Navier–Stokes and

density equations through the Boussinesq term. This coupling leads to the non-

diagonal term in the stabilization matrix in Eq. (3.15). The formulation is moti-

vated by the stabilized methods for convection–diffusion systems in,46, 47, 84 which

was recently applied to LES simulations of stratified flows in,32, 115, 120 showing

enhanced performance in capturing the turbulence statistics in this class of prob-

lems.

Remark. The RBVMS formulation of this work is deployed to a stationary

mesh for particle-laden flows. One should note that the formulation and its more

advanced versions, such as Space–Time (ST–VMS) technique54, 90, 93–95 and Arbi-

trary Lagrangian–Eulerian technique (ALE-VMS),10, 17, 21–24, 30, 87 have success-

fully been used in LES simulations of a wide range of challenging fluid dynamics and

fluid–structure interaction problems. These methods particularly show significant

advantages when deployed to flow problems with moving interfaces and boundaries.

Several recent application domains include environmental flows,33, 79, 120, 124 wind

energy4, 15, 18, 22, 25, 36, 57–59, 66, 67, 73, 86, 89, 91, 92, 99, 100, 118, 119,

tidal energy,4, 5, 80, 117, 118, 123 cavitation flows5, 6, hypersonic flows,35 bio-

mechanics,43, 52, 64, 88, 107, 108 gas turbine,76, 77, 116 and transportation engineer-

ing.60, 61, 63, 96–98

Remark. Although this paper utilizes C1-continuous quadratic NURBS, it can

easily accommodate other representations such as T-splines or subdivision sur-

faces.8, 34, 44

3.3. Other numerical details

We digitize the RBVMS in Eq. (3.7) with quadratic NURBS basis functions with

uniform control points. The velocity, pressure, and density unknowns are solved in

a fully-coupled fashion. The Generalized-α method is used for the time integration

scheme. Newton’s method is utilized to linearize the nonlinear nodal equations.

The resulting linear system is solved by a generalized minimal residual method

(GMRES) with block preconditioning.82, 83
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4. Computational Setup

We deploy the RBVMS with the NURBS discretization to simulate particle-laden

flows in the lock-exchange configuration over a flat bottom surface. For simplicity,

we call the method VMS–IGA in the rest of the paper. The computational setup is

described as follows.

As shown in Fig. 1, the computational domain is a rectangular box with dimen-

sions of Lx × Ly × Lz = 14× 2× 2, where uniformly suspended particle sediments

are initially enclosed in a small portion (Lsx × Lsy × Lsz = 1× 2× 2) of the domain

and separated by a barrier with the clear fluid on the other side. Due to gravity, an

invasion of the “heavy” fluid to the “light” fluid will happen, leading to particle-

laden turbulence. In all the simulations, settling velocity us, Reynolds number Re,

and Schmidt number Sc are set to 0.02, 10,000, and 1, respectively. The prob-

lem is spatially discretized by C1 continuous quadratic B-splines with elements of

350 × 50 × 50. Fig. 2 shows a snapshot of the mesh used. Here, the control points

are placed to achieve uniform spatial resolution for a fair comparison with refer-

ence results. For the discussion of control point distribution and parameterization,

readers are referred to the work.74, 75, 111 The time step size is ∆t = 2.0× 10−3.

The boundary conditions are specified as follows. For stream-wise and span-

wise directions, no penetration and free-slip boundary conditions are used for the

velocity field. For the top wall, a no-slip boundary is used for the velocity field.

For the bottom wall, a no-slip boundary is used for the velocity field. A no-flux

Fig. 1. (Color online) Computational setup. The blue color represents the initial distribution of
suspended particle sediments.

Fig. 2. The mesh employed in the simulation.
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boundary condition is used for the density field at the side and top walls. No

erosion and re-suspension are allowed for the density field on bottom wall, namely,

us∇ρ · eg + ∂ρ
∂t = 0.

This case represents one of the most famous canonical configurations of particle-

laden flows for conducting laboratory experiments and high-resolution simulations.

In this paper, the results of this case from the DNS in38 with a resolution of 2305×
513×385 and the high fidelity simulation in72 with a resolution of 1440×200×221

are used for assessing the accuracy of VMS–IGA.

5. Results and Discussions

We present the simulation results in this section. The discussion focus will be

placed on evaluating the accuracy of VMS–IGA by comparing it with existing high-

resolution simulation results.

5.1. Flow visualization

We start the discussion with instantaneous flow visualizations. Fig. 3 shows the

isosurface of ρ = 0.25 colored by velocity magnitude. The DNS results from38 is

also plotted for comparison. For this case, the VMS–IGA, with a relatively coarse

mesh, produces quite similar interface patterns as the DNS does. The typical 3D

lobe-and-cleft structures are captured well by the VMS–IGA, as shown in Fig. 4.

Fig. 5 plots the vorticity using the isosurface of Q-criterion (Q = 1) at t = 20.

Fig. 3. Isosurface of ρ = 0.25 at t = 2, 8, and 14 colored by velocity magnitude. Left: DNS.
Right: VMS–IGA. One should note that the color in the DNS results38 is not based on velocity

magnitude.
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Fig. 4. 3D lobe-and-cleft structures at t = 8.

Fig. 5. Vortex structure based on isosurface using Q-criterion (Q = 1) at t = 20 colored by

velocity magnitude. Top: DNS. Bottom: VMS–IGA. (One should note that the color in the DNS
results38 is not based on velocity magnitude).

These vortex structures illustrate the complexity of the turbulence in this type of

particle-laden flow. Again, similar vortex structures are found between the DNS

and VMS–IGA results.

5.2. Turbulence statistics

We further report quantified turbulence statistics of the velocity and density fields.

Fig. 6 shows the time history of the current front location. A good agreement is

found between DNS and VMS–IGA results, which show that the front has almost

a constant front speed before t = 10 and slightly decreases after that.
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Fig. 6. Time history of the front location predicted by VMS–IGA and the DNS from.38

Suspension and sedimentation are two important quantities of interest in

particle-laden currents. The total suspended particle mass can be computed as

mp(t) =

∫
Ω

ρ dΩ. (5.1)

The time history of the suspended mass mp(t) normalized by the initial mass

mp(0), predicted by DNS and VMS–IGA, is plotted in Fig. 7. Fig. 8 shows the

sedimentation rate in a log–log fashion. The sedimentation rate is quantified by the

time derivative of the total mass of sedimented particles per unit span as

ṁs(t) =
1

Ly

∫ Ly

0

∫ Lx

0

ρw(x, y, t)us dxdy, (5.2)

where ρw(x, y, t) is the density at the bottom surface.

Fig. 7. Time history of dimensionless suspended particle mass predicted by VMS–IGA and the
DNS from.38
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Fig. 8. Sedimentation rate predicted by VMS–IGA and the DNS from.38

The VMS–IGA shows good agreement with DNS for the suspended mass. The

VMS–IGA also achieves reasonable agreement with the DNS result for the sedimen-

tation rate before t = 9, but a noticeable discrepancy is observed after that, as seen

Fig. 8. To further evaluate the IGA’s accuracy, we also plot the high-fidelity results

using a resolution of 1440× 200× 221 from,72 which shows a similar prediction as

the VMS–IGA does.

The sedimentation process can be characterized by the stream-wise deposit of

the sediment particles, which is quantified as

Dt(x, t) =
1

LsxL
s
y

∫ t

0

〈ρw(x, τ)〉yus dτ, (5.3)

where 〈ρw(x, τ)〉y is averaged density over y-direction at the bottom surface. Fig. 9

depicts the particle deposit along stream-wise (x) direction at t = 7.3 and t = 11.0.

The deposit profiles display a complicated pattern along the stream-wise, making

Fig. 9. Deposit profile for t = 7.3 and t = 11 predicted by VMS–IGA and the DNS results
from.38
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it hard to obtain a monotonic tendency. Overall, the VMS–IGA predicts quite a

similar deposit profile as the DNS does.

The fluid motion of particle-laden flows is essentially an energy transfer process.

The initial potential energy is gradually converted to kinetic energy. If no potential

energy is fed into the domain, the fluid motion will ultimately decay due to energy

dissipation, caused by both convection gradients and the energy loss experienced

by the particles due to progressive settling. At time t, the potential energy Ep(t),

kinetic energy k(t), turbulent dissipation Eν(t), and dissipation from suspended

particles Es(t) can be computed as

Ep(t) =

∫
Ω

ρz dΩ, (5.4)

k(t) =

∫
Ω

1

2
u · u dΩ, (5.5)

Eν(t) =

∫ t

0

∫
Ω

2

Re
S : S dΩ dτ, (5.6)

Es(t) =

∫ t

0

∫
Ω

usρ dΩ dτ, (5.7)

where S = 1
2 [∇u+(∇u)T ] is the symmetric part of the velocity gradient. Here, the

potential energy is evaluated by the elevation of the center of mass of the heavy

fluid relative to the light fluid.

The time history of Ep(t), k(t), Eν(t), and Es(t), normalized by the initial poten-

tial energy Ep(0), is plotted from Figs. 10–13. Although a noticeable discrepancy is

found in Es(t) between VMS–IGA and DNS, VMS–IGA produces accurate predic-

tions of other energy distribution, showing good agreement with the DNS results

despite a relatively coarse mesh being used.

Fig. 10. Time history of normalized potential energy Ep(t)/Ep(0) predicted by VMS–IGA and
the DNS from.38
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Fig. 11. Time history of normalized kinetic energy k(t)/Ep(0) predicted by VMS–IGA and the

DNS from.38

Fig. 12. Time history of normalized dissipated energy Es(t)/Ep(0) predicted by VMS–IGA and

the DNS from.38

Fig. 13. Time history of normalized dissipated energy Eν(t)/Ep(0) predicted by VMS–IGA and
the DNS from.38
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6. Conclusions

This paper integrated IGA with a modified RBVMS formulation to simulate tur-

bulent particle-laden flows over a flat bottom surface. We compared the simulation

results with available DNS and high-resolution simulation results from the liter-

ature. It was found that the higher-order basis functions of IGA, combined with

VMS as the LES model, offer higher accuracy in capturing critical quantities of

interest in particle-laden flows with fewer degrees of freedom than existing models.

The results presented in this paper provide a strong testimony of the advantage of

using IGA in multi-phase flow simulations.
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34. F. Cirak, M. Ortiz and P. Schröder, Subdivision surfaces: A new paradigm for thin-
shell finite-element analysis, Internat. J. Numer. Methods Engrg. 47 (2000) 2039–
2072.

35. D. Codoni, G. Moutsanidis, M.-C. Hsu, Y. Bazilevs, C. Johansen and A. Korobenko,
Stabilized methods for high-speed compressible flows: Toward hypersonic simula-
tions, Comput. Mech. 67 (2021) 785–809.

36. M. Dhalwala, A. Bayram, P. Oshkai and A. Korobenko, Performance and near-wake
analysis of a vertical-axis hydrokinetic turbine under a turbulent inflow, Ocean Eng.
257 (2022) 111703.

37. S. Elghobashi, On predicting particle-laden turbulent flows, Appl. Sci. Res. 52 (1994)
309–329.

38. L. Espath, L. Pinto, S. Laizet and J. H. Silvestrini, Two-and three-dimensional direct
numerical simulation of particle-laden gravity currents, Comput. Geosci. 63 (2014)
9–16.

39. F. Evrard, F. Denner and B. Van, Euler–Lagrange modelling of dilute particle-laden
flows with arbitrary particle-size to mesh-spacing ratio, J. Comput. Phys.: X 8 (2020)
100078.

40. A. J. Herrema, E. L. Johnson, D. Proserpio, M. C. H. Wu, J. Kiendl and M.-C. Hsu,
Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with
application to composite wind turbine blades, Comput. Methods Appl. Mech. Engrg.
346 (2019) 810–840.

41. A. J. Herrema, J. Kiendl and M.-C. Hsu, A framework for isogeometric-analysis-
based optimization of wind turbine blade structures, Wind Energy 22 (2019) 153–
170.

42. M.-C. Hsu, I. Akkerman and Y. Bazilevs, High-performance computing of wind tur-
bine aerodynamics using isogeometric analysis, Comput. Fluids 49 (2011) 93–100.

43. M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks and T. J. R. Hughes, Fluid–
structure interaction analysis of bioprosthetic heart valves: Significance of arterial
wall deformation, Comput. Mech. 54 (2014) 1055–1071.

44. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff,
A. Reali, Y. Bazilevs and M. S. Sacks, Dynamic and fluid–structure interaction

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
22

.3
2:

25
29

-2
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

O
U

T
H

E
A

ST
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/0
5/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



January 7, 2023 8:58 WSPC/103-M3AS 2250060

2546 Q. Zhu, M. Zhu & J. Yan

simulations of bioprosthetic heart valves using parametric design with T-splines and
Fung-type material models, Comput. Mech. 55 (2015) 1211–1225.

45. T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl.
Mech. Engrg. 194 (2005) 4135–4195.

46. T. J. R. Hughes and M. Mallet, A new finite element formulation for computa-
tional fluid dynamics: III. The generalized streamline operator for multidimensional
advective-diffusive systems, Comput. Methods Appl. Mech. Engrg. 58 (1986) 305–
328.

47. T. J. R. Hughes, G. Scovazzi and T. E. Tezduyar, Stabilized methods for compressible
flows, J. Sci. Comput. 43 (2010) 343–368, doi:10.1007/s10915-008-9233-5.

48. A. Johnson and T. E. Tezduyar, Simulation of multiple spheres falling in a liquid-
filled tube, Comput. Methods Appl. Mech. Engrg. 134 (1996) 351–373.

49. A. Johnson and T. E. Tezduyar, 3D simulation of fluid–particle interactions with the
number of particles reaching 100, Comput. Methods Appl. Mech. Engrg. 145 (1997)
301–321.

50. A. Johnson and T. E. Tezduyar, Advanced mesh generation and update methods for
3D flow simulations, Comput. Mech. 23 (1999) 130–143.

51. A. Johnson and T. E. Tezduyar, Methods for 3D computation of fluid–object inter-
actions in spatially periodic flows, Comput. Methods Appl. Mech. Engrg. 190 (2001)
3201–3221.

52. E. L. Johnson, M. C. H. Wu, F. Xu, N. M. Wiese, M. R. Rajanna, A. J. Herrema,
B. Ganapathysubramanian, T. J. R. Hughes, M. S. Sacks and M.-C. Hsu, Thinner
biological tissues induce leaflet flutter in aortic heart valve replacements, Proc. Natl.
Acad. Sci. 117 (2020) 19007–19016.

53. V. Kalro, S. Aliabadi, W. Garrard, T. Tezduyar, S. Mittal and K. Stein, Parallel
finite element simulation of large ram-air parachutes, Internat. J. Numer. Methods
Fluids 24 (1997) 1353–1369.

54. V. Kalro and T. E. Tezduyar, A parallel 3D computational method for fluid–structure
interactions in parachute systems, Comput. Methods Appl. Mech. Engrg. 190 (2000)
321–332.

55. A. Kartushinsky, S. Tisler, J. Oliveira and C. Van, Eulerian–Eulerian modelling of
particle-laden two-phase flow, Powder Technol. 301 (2016) 999–1007.

56. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner and K.-U. Bletzinger, The bending
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