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We present large-eddy simulations (LES) of wind and wave-driven turbulent boundary layers in shallow
water with Langmuir circulation using a variational multi-scale formulation of the Craik-Leibovich equa-
tions. The simulations are performed using Isogeometric Analysis (IGA) based on quadratic non-uniform
rational basis spline (NURBS) basis functions. Wind and wave-driven turbulent boundary layers over a flat
bottom surface representative of open ocean conditions in inner-shelf regions with turbulent Langmuir

Keywords: number La; = 0.7 and wind stress friction Reynolds number Re; = 395 are first simulated. The present
Langmuir turbulence results agree well with the reference results based on a spectral LES with higher mesh resolution [1].
LES Then, to investigate the effect of seabed topography on the turbulence, we simulate turbulent boundary
ig\\/ S layers over a sloped bottom surface with wind and wave forcing parallel to the shore, representative of

a surf-shelf transition zone. We find that the Langmuir cell size increases as the water column shallows
approaching onshore and the cell center shifts to the onshore direction. The mean velocity and turbulent

kinetic energy along the shore are quantified.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Langmuir turbulence is an environmental flow phenomenon
with Langmuir circulation (LC) structures that consists of pairs
of parallel counter-rotating cells (vortices) roughly aligned in the
wind direction [1-3]. Langmuir turbulence is widely observed in
the ocean and has been a long-standing fundamental problem in
geophysics. Langmuir turbulence can be modeled by the Craik-
Leibovich equations (C- L equations) [4], which are based on
the Navier-Stokes equations of incompressible flows augmented
with a vortex force term (known as Craik-Leibovich force or C-
L force) in the momentum equations. The C-L vortex force, de-
fined as the cross product between the Stokes drift velocity and
the fluid vorticity, represents the interaction between the Stokes
drift induced by surface gravity waves and vertical shear of the
wind-driven current. Direct numerical simulations of the Craik-
Leibovich equations require massive computational resources due
to the interaction between the surface waves and the shear cur-
rents across a wide range of spatial and temporal scales. To ef-
fectively investigate higher Reynolds number Langmuir turbulence,
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large-eddy simulations (LES) are typically adopted. In this paper,
departing from traditional LES models based on spectral meth-
ods or finite difference methods, we utilize a residual-based vari-
ational multiscale (RBVMS) [5] turbulence model to solve the
C-L equations. We discretize the formulation using isogeometric
analysis (IGA) [6,7] based on quadratic non-uniform rational ba-
sis spline (NURBS) elements. Research [8-19] has proven RBVMS
and its moving-domain version [20-28] as effective methods to
model high Reynolds number turbulent flows (both single-phase
and multi-phase) in many fundamental and industrial applications.
The combination of RBVMS and IGA [5,11,29-32] can produces
equivalent accuracy as traditional LES on intermediate meshes and
converge to DNS results. This is attributed to the higher accuracy
per-degree-of-freedom of the IGA basis and the variational consis-
tency of the RBMVS. In this paper, the IGA-based RBVMS is utilized
to quantify the LC structures and important turbulence statistics of
Langmuir boundary layers relevant to ocean science. We first sim-
ulate the case with a flat bottom surface and compare the results
with spectral LES results with higher mesh resolution [1]. Then,
the Langmuir boundary layers with a sloped bottom surface are
further simulated to investigate the effect of seabed topography on
the flow structures.


https://doi.org/10.1016/j.mechrescom.2020.103570
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2020.103570&domain=pdf
mailto:yuri_bazilevs@browm.edu
https://doi.org/10.1016/j.mechrescom.2020.103570

2 Q. Zhu, J. Yan and A.E. Tejada-Martinez et al./Mechanics Research Communications 108 (2020) 103570

2mb

I/Windl/stres.s'/

e — =] L — —

26 s

7/ X3

X2

| 8/3716 X,

|
|
Fig. 1. Problem setup of the flat bottom surface case.

We present the paper as follows. Section 2 presents the govern-
ing equations of Langmuir turbulence and the corresponding RB-
VMS formulation. Section 3 presents the simulations of Langmuir
turbulent boundary layers with a flat bottom surface and a sloped
bottom surface. Conclusions are drawn in Section 4.

2. Numerical method
2.1. Craik-Leibovich equations

Langmuir turbulent boundary layers are governed by the Craik-
Leibovich equations, which are based on Navier-Stokes equations
of incompressible flows augmented with the C-L force term in the
momentum equations, given as:

Ju
ry(u, p) = Kl +V.(ueu)+Vp-V.Q2vVu)

f-¢pxVxu=0 (1)

re(u):=V.u=0 (2)

where u = (uq, uy, u3)7 is the velocity vector, p is the pressure, v is
the kinematic viscosity, V = (3/0x;, 9/9x,, 8/0x3)T is the gradient
operator, VS is the symmetric part of the gradient operator, f is the
body force per unit mass, ¢ = (@1, ¢, ¢3)T is the depth-dependent

-
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Stokes drift velocity vector, induced by surface gravity waves. The
definition of ¢ will be specified next. The cross product between
¢ and the flow vorticity V x u represents the C-L vortex force.

2.2. Residual-based variational multiscale formulation

We employ the residual-based variational multiscale formula-
tion (RBVMS) [5,10] to solve the above governing equations. The
semi-discrete formulation is stated as following. Let V, and V), de-
note the discrete velocity and pressure trial function spaces, and
Wy and W, denote the corresponding test function spaces. The RB-
VMS formulation of Langmuir turbulent boundary layers is stated
as following. Find u" € V, and p" € V), such that for all wh e W,
and q" e Wy,

B({w". ¢"}. {u”, p"}) + Byws({w". "}. {u”. p})
—F({w".q"}) =0 (3)
where B and Byys are the Galerkin formulation and fine-scale

terms arising from RBVMS, respectively. B, Byys, and F are defined
as

B({w.q}, {u, p}) =
ou s
fﬂw.mdsz_fﬂvW.(u@u)dsz
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Fig. 2. Partially averaged fluctuation (u?) for the flat bottom surface case. Top: streamwise direction (x; direction). Middle: crosswind direction (x, direction). Bottom:

wall-normal direction (x3 direction).
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Fig. 3. Mean velocity (top) and TKE (bottom) in the wall-normal direction.

F({w,q}):/ﬂw~fd§2+frw.hdl“ 6)

where h is the traction on the boundary I', which will incorpo-
rate the wind shear stress. (More details on the boundary condi-
tions will be given in Section 3 along with the results for the cases
considered.) Einstein summation is used for the repeated index. A;
(i=1,2,3) in Eq. (5) are the generalized advective matrices de-

Offshore

fined in terms of Stokes drift velocity components, namely,

. [0 —¢2 —¢5]

A=|0 ¢ 0 (7)
0 0 ¢ ]

o [¢2 0 07

A=|-¢1 0 —¢3 (8)
| 0 0 ¢
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A;=| 0 ¢; 0 (9)
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v and p in Eq. (5) are the fine-scale velocity and pressure.
Analogously to [5], they are defined as

u = —tyry ", p") (10)

p = —tcrc(ut) (1)
where t); and 7 are the SUPG [33] and PSPG [34,35] parameters.
To define ), for the C-L equations, we re-write the left hand side
of the momentum equations as a quasi-linear advective-diffusive
system, namely,

Ju Ju

l‘M(ll,P)=a—+A,-~—+Vp—V~(2vV5u)—f

t 8X,' (12)

where A;=A;+u;l is the “effective” advective flux Jacobian.
Following the developments in [36-38] for multi-dimensional
advective-diffusive systems, Ty, is computed as

_1
2

4
Ty = <7I+A,‘G,’jAJ’+CIG,‘jGUUZI) (13)

At?
where At is the time step of the simulation, G is the mesh ele-
ment metric tensor of the mapping from the parametric domain to
the physical domain. C; is a constant arising in the element-level
inverse estimate [39]. The matrix square root inverse is done by
the Denman-Beavers algorithm [40].

The above RBMVS formulation is integrated in time by the
generalized-o method [41]. Newton-Raphson method is applied to
linearize the equations. The resulting linear equation systems are
solved using a generalized minimal residual method (GMRES) ap-
proach [42] with diagonal preconditioning.
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Fig. 4. Problem setup for the sloped bottom surface case.
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Fig. 5. Langmuir cell size along the shore (x,).

3. Results

In this section, Langmuir turbulent boundary layers are simu-
lated with both flat bottom surface and sloped bottom surface. The
flow is driven by a wind shear h = (h, 0, 0)T. The body force f = 0.
The flow can be characterized by the turbulent Langmuir number
La; = /us/uy and friction Reynolds number Re; = u;§/v, where u;
is a characteristic Stokes drift velocity [1] and u; is the wind stress
friction velocity.

3.1. Flat bottom surface

We first simulate Langmuir turbulence boundary layers with a
flat bottom surface at La; = 0.7 and Re; = 395 following [1]. The

. . . _ cosh(2kx3) T
Stokes drift velocity is chosen as ¢ = (US7ZSinh2(2K5)’ 0,0)", where

k is the dominant wave number. In present work, ¥ = 128, us, and
é and v are chosen such that the desired La; and Re; are achieved.

Fig. 1 shows the problem setup. The computation domain
is a box with dimensions 27§ x 873f—5 x 28. The mesh consist of
32 x 32 x 34 C'-continuous quadratic NURBS elements. The el-
ements in the wall-normal direction (x3) are stretched towards
the top surface (x3 =238) and bottom surface (x3 =0) to better
resolve the boundary layers. Periodic boundary condition is used
in the stream-wise (x;) and crosswind (x,) directions, representa-

tive of open ocean conditions unaffected by lateral boundaries. No-
penetration boundary condition is applied at the top surface in ad-
dition to wind shear stress. No-slip condition is applied at the bot-
tom surface through the weak enforcement of essential boundary
condition approach (weak BC). For weak BC, we refer the readers
to [32,43] for the original development and [11,14,44-49] for sev-
eral applications to CFD and fluid-structure interaction (FSI) prob-
lems.

To extract the crosswind-vertical (x,-x3 plane) flow structure,
the following triple decomposition is adopted.

Ui = (u;) +uj = () + (Uf)ex, + 1] (14)

where ( - ) without subscript denotes the averaging operation over
time, the stream-wise and crosswind directions, (-)rx, denotes the
averaging operation over time and the stream-wise direction. So
the partially averaged fluctuation is given by “;P = (u})ry, . (Note the
subscript / here denotes fluctuation in Reynolds averaging, and not
the fine unresolved scales as in Eq. 5.)

Fig. 2 shows the partially averaged fluctuations of the veloc-
ity components in the stream-wise (x;), crosswind (x,), and wall-
normal (x3) directions, normalized by the friction velocity u;.
These fluctuations reveal the resolution of a single Langmuir cell
occupying the entire crosswind width of the domain. The Langmuir
cell structure can be observed in terms of crosswind and wall-
normal components. The surface divergence of the cell corresponds
to the surface divergence of positive and negative crosswind veloc-
ity fluctuations. Furthermore, the surface divergence is positioned
directly above the upwelling limb of the cell, characterized by pos-
itive wall-normal velocity fluctuations. These visualizations quali-
tatively agree with the spectral LES results in [1] and field obser-
vations in [50]. Fig. 3 shows the mean velocity and turbulent ki-
netic energy (TKE) normalized by averaged center-line velocity (Uc)
along the wall direction (averaging is performed over time, stream-
wise, and crosswind directions). This problem was also simulated
using a spectral LES with a higher resolution in [1]. The results
are also plotted in Fig. 3 for comparison. Excellent agreement is
achieved for the mean flow, and a reasonably good agreement is
achieved for the TKE for the mesh resolution employed here.

3.2. Sloped bottom surface

To investigate the effect of seabed topography, we simulate
Langmuir turbulence boundary layers over a sloped bottom sur-
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Fig. 6. Two representative Langmuir cells, visualized by partially averaged velocity fluctuations in crosswind direction (ug). Top: offshore. Bottom: onshore.



Q. Zhu, J. Yan and A.E. Tejada-Martinez et al./Mechanics Research Communications 108 (2020) 103570

00007

o

U/
1.0

0.5

uu

-1.0 T
0.0 0.4 0.8 1.2 1.6 2.0

Fig. 7. Mean streamwise velocity for the sloped bottom surface.

face. Fig. 4 shows the problem setup. The dimensions of the
stream-wise and crosswind directions are 327 /3 and 407, respec-
tively. The domain is significantly longer in the stream-wise and
crosswind directions to allow resolution of multiple Langmuir cells.
The water depth changes from 2§ to & linearly from the offshore
to the onshore. The mesh consists of 64 x 144 x 34 C'-continuous
quadratic NURBS elements.

The boundary conditions are the same as in the previous sec-
tion except no-penetration boundary condition is adopted for the
crosswind direction. The wind stress is parallel to the shore. The
mesh is also stretched towards the top and bottom surfaces to
resolve the boundary layers better. Locally changing wind shear
stress is applied on the top surface to achieve constant friction
Re; =395 with respect to the local water depth. The Stokes drift

L. _ cosh(2«xb) T I ~
velocity is defined as ¢ = (u572sinh2(2/(51)’ 0,0)', where §' is the lo
cal water half depth and x’3 is the local distance to the bottom sur-
face. Note that the waves (Stokes drift) are aligned with the wind.
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Fig. 8. TKE for the sloped bottom surface.

The triple-decomposition in Eq. (14) is used again to ex-
tract the crosswind-vertical (x,-x3 plane) Langmuir cell structure.
Fig. 5 shows the Langmuir cell size from offshore to onshore. The
cell size increases approaching onshore. We present two represen-
tative Langmuir cells, one offshore and one onshore, in Fig. 6 by
visualizing the partially averaged velocity fluctuations along the
crosswind (x,) direction. Fig. 6 also indicates that the center of
the cells slightly shifts to the onshore direction. Since the cross-
wind direction is no longer periodic, we quantify the mean veloc-
ity and turbulent kinetic energy (TKE) by only averaging over time
and the stream-wise direction. Fig. 7 and Fig. 8 show mean veloc-
ity and TKE along three lines (x, = 107§,207§, and 307 §). The
mean velocity and TKE are normalized by the local center veloc-
ity U! at the current x, coordinate. It can be seen that the vertical
mixing of momentum induced by the cells increases with decreas-
ing distance to the shore. Furthermore, the near bottom TKE also
increases with decreasing distance to the shore.
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4. Conclusion

We simulated Langmuir turbulent boundary layers in shal-
low water using a residual-based variational multi-scale formula-
tion (RBVMS) with quadratic NURBS basis functions. Simulations
showed the combination of RBVMS and IGA can produce accurate
results with a relatively coarse mesh. We quantified the turbu-
lence statistics, including partially averaged velocity fluctuations,
mean velocity, and TKE, of the Langmuir turbulent boundary lay-
ers over a sloped bottom surface. In an idealized setup with wind
and waves parallel to the shore, we found that the Langmuir cell
size increases with decreasing distance to the shore. For each cell,
the cell center shifts slightly to the onshore direction. The simula-
tions show the potential of the numerical methods for understand-
ing Langmuir turbulence in coastal regions, which is a fundamental
problem in coastal physical oceanography. In the future we hope to
make use of these numerical simulations to investigate Langmuir
turbulence under more realistic conditions by considering bottom
roughness, misaligned wind and waves and higher Reynolds num-
bers.
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