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We present large-eddy simulations (LES) of wind and wave-driven turbulent boundary layers in shallow 

water with Langmuir circulation using a variational multi-scale formulation of the Craik-Leibovich equa- 

tions. The simulations are performed using Isogeometric Analysis (IGA) based on quadratic non-uniform 

rational basis spline (NURBS) basis functions. Wind and wave-driven turbulent boundary layers over a flat 

bottom surface representative of open ocean conditions in inner-shelf regions with turbulent Langmuir 

number La t = 0 . 7 and wind stress friction Reynolds number Re τ = 395 are first simulated. The present 

results agree well with the reference results based on a spectral LES with higher mesh resolution [1]. 

Then, to investigate the effect of seabed topography on the turbulence, we simulate turbulent boundary 

layers over a sloped bottom surface with wind and wave forcing parallel to the shore, representative of 

a surf-shelf transition zone. We find that the Langmuir cell size increases as the water column shallows 

approaching onshore and the cell center shifts to the onshore direction. The mean velocity and turbulent 

kinetic energy along the shore are quantified. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Langmuir turbulence is an environmental flow phenomenon

ith Langmuir circulation (LC) structures that consists of pairs

f parallel counter-rotating cells (vortices) roughly aligned in the

ind direction [1–3] . Langmuir turbulence is widely observed in

he ocean and has been a long-standing fundamental problem in

eophysics. Langmuir turbulence can be modeled by the Craik–

eibovich equations (C– L equations) [4] , which are based on

he Navier–Stokes equations of incompressible flows augmented

ith a vortex force term (known as Craik–Leibovich force or C-

 force) in the momentum equations. The C–L vortex force, de-

ned as the cross product between the Stokes drift velocity and

he fluid vorticity, represents the interaction between the Stokes

rift induced by surface gravity waves and vertical shear of the

ind-driven current. Direct numerical simulations of the Craik-

eibovich equations require massive computational resources due

o the interaction between the surface waves and the shear cur-

ents across a wide range of spatial and temporal scales. To ef-

ectively investigate higher Reynolds number Langmuir turbulence,
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arge-eddy simulations (LES) are typically adopted. In this paper,

eparting from traditional LES models based on spectral meth-

ds or finite difference methods, we utilize a residual-based vari-

tional multiscale (RBVMS) [5] turbulence model to solve the

–L equations. We discretize the formulation using isogeometric

nalysis (IGA) [6,7] based on quadratic non-uniform rational ba-

is spline (NURBS) elements. Research [8–19] has proven RBVMS

nd its moving-domain version [20–28] as effective methods to

odel high Reynolds number turbulent flows (both single-phase

nd multi-phase) in many fundamental and industrial applications.

he combination of RBVMS and IGA [5,11,29–32] can produces

quivalent accuracy as traditional LES on intermediate meshes and

onverge to DNS results. This is attributed to the higher accuracy

er-degree-of-freedom of the IGA basis and the variational consis-

ency of the RBMVS. In this paper, the IGA-based RBVMS is utilized

o quantify the LC structures and important turbulence statistics of

angmuir boundary layers relevant to ocean science. We first sim-

late the case with a flat bottom surface and compare the results

ith spectral LES results with higher mesh resolution [1] . Then,

he Langmuir boundary layers with a sloped bottom surface are

urther simulated to investigate the effect of seabed topography on

he flow structures. 
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Fig. 1. Problem setup of the flat bottom surface case. 
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We present the paper as follows. Section 2 presents the govern-

ing equations of Langmuir turbulence and the corresponding RB-

VMS formulation. Section 3 presents the simulations of Langmuir

turbulent boundary layers with a flat bottom surface and a sloped

bottom surface. Conclusions are drawn in Section 4 . 

2. Numerical method 

2.1. Craik-Leibovich equations 

Langmuir turbulent boundary layers are governed by the Craik–

Leibovich equations, which are based on Navier–Stokes equations

of incompressible flows augmented with the C–L force term in the

momentum equations, given as: 

r M 

(u , p) := 

∂u 

∂t 
+ ∇ · (u � u ) + ∇p − ∇ · (2 ν∇ 

s u ) 

−f − φ × ∇ × u = 0 (1)

r c (u ) := ∇ · u = 0 (2)

where u = (u 1 , u 2 , u 3 ) 
T is the velocity vector, p is the pressure, ν is

the kinematic viscosity, ∇ = (∂ /∂ x 1 , ∂ /∂ x 2 , ∂ /∂ x 3 ) 
T is the gradient

operator, ∇ 

s is the symmetric part of the gradient operator, f is the

body force per unit mass, φ = (φ1 , φ2 , φ3 ) 
T is the depth-dependent
Fig. 2. Partially averaged fluctuation ( u p 
i 

) for the flat bottom surface case. Top: stream

wall-normal direction ( x 3 direction). 
tokes drift velocity vector, induced by surface gravity waves. The

efinition of φ will be specified next. The cross product between

and the flow vorticity ∇ × u represents the C–L vortex force. 

.2. Residual-based variational multiscale formulation 

We employ the residual-based variational multiscale formula-

ion (RBVMS) [5,10] to solve the above governing equations. The

emi-discrete formulation is stated as following. Let V u and V p de-

ote the discrete velocity and pressure trial function spaces, and

 u and W p denote the corresponding test function spaces. The RB-

MS formulation of Langmuir turbulent boundary layers is stated

s following. Find u 

h ∈ V u and p h ∈ V p , such that for all w 

h ∈ W u

nd q h ∈ W p , 

 

({ w 

h , q h } , { u 

h , p h } ) + B VMS 

({ w 

h , q h } , { u 

h , p h } )
− F 

({ w 

h , q h } ) = 0 (3)

here B and B VMS are the Galerkin formulation and fine-scale

erms arising from RBVMS, respectively. B , B VMS , and F are defined

s 

B ( { w , q } , { u , p} ) = ∫ 
�

w · ∂u 

∂t 
d� −

∫ 
�

∇ 

s w : (u � u ) d�

−
∫ 
�

∇ · w p d� + 

∫ 
�

q ∇ · u d�

+ 

∫ 
�

w · ˜ A i 

∂u 

∂x i 
d� + 

∫ 
�

∇ 

s w : 2 ν∇ 

s u d� (4)

B VMS ( { w , q } , { u , p} ) = 

−
∫ 
�

∇ 

s w : (u 

′ 
� u + u � u 

′ + u 

′ 
� u 

′ ) d�

−
∫ 
�

∇ · w p ′ d� −
∫ 
�

q ∇ · u 

′ d�

−
∫ 
�

˜ A 

T 
i 

∂w 

∂x i 
· u 

′ d� (5)
wise direction ( x 1 direction). Middle: crosswind direction ( x 2 direction). Bottom: 
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Fig. 3. Mean velocity (top) and TKE (bottom) in the wall-normal direction. 
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 ( { w , q } ) = 

∫ 
�

w · f d� + 

∫ 
�

w · h d� (6)

here h is the traction on the boundary �, which will incorpo-

ate the wind shear stress. (More details on the boundary condi-

ions will be given in Section 3 along with the results for the cases

onsidered.) Einstein summation is used for the repeated index. ˜ A i 

 i = 1 , 2 , 3 ) in Eq. (5) are the generalized advective matrices de-
Fig. 4. Problem setup for the slo
ned in terms of Stokes drift velocity components, namely, 

˜ 
 1 = 

[ 

0 −φ2 −φ3 

0 φ1 0 

0 0 φ1 

] 

(7) 

˜ 
 2 = 

[ 

φ2 0 0 

−φ1 0 −φ3 

0 0 φ2 

] 

(8) 

˜ 
 3 = 

[ 

φ3 0 0 

0 φ3 0 

−φ1 −φ2 0 

] 

(9) 

u 

′ 
and p 

′ 
in Eq. (5) are the fine-scale velocity and pressure.

nalogously to [5] , they are defined as 

 

′ = −τM 

r M 

(u 

h , p h ) (10)

p 
′ = −τC r C (u 

h ) (11)

here τM 

and τ C are the SUPG [33] and PSPG [34,35] parameters.

o define τM 

for the C–L equations, we re-write the left hand side

f the momentum equations as a quasi-linear advective-diffusive

ystem, namely, 

 M 

(u , p) = 

∂u 

∂t 
+ A i ·

∂u 

∂x i 
+ ∇p − ∇ · (2 ν∇ 

s u ) − f (12) 

here A i = 

˜ A i + u i I is the “effective” advective flux Jacobian.

ollowing the developments in [36–38] for multi-dimensional

dvective-diffusive systems, τM 

is computed as 

M 

= 

(
4 

�t 2 
I + A i G i j A j + C I G i j G i j ν

2 I 

)− 1 
2 

(13) 

here �t is the time step of the simulation, G is the mesh ele-

ent metric tensor of the mapping from the parametric domain to

he physical domain. C I is a constant arising in the element-level

nverse estimate [39] . The matrix square root inverse is done by

he Denman–Beavers algorithm [40] . 

The above RBMVS formulation is integrated in time by the

eneralized- α method [41] . Newton–Raphson method is applied to

inearize the equations. The resulting linear equation systems are

olved using a generalized minimal residual method (GMRES) ap-

roach [42] with diagonal preconditioning. 
ped bottom surface case. 
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Fig. 5. Langmuir cell size along the shore ( x 2 ). 
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3. Results 

In this section, Langmuir turbulent boundary layers are simu-

lated with both flat bottom surface and sloped bottom surface. The

flow is driven by a wind shear h = (h, 0 , 0) T . The body force f = 0.

The flow can be characterized by the turbulent Langmuir number

La t = 

√ 

u s /u τ and friction Reynolds number Re τ = u τ δ/ν, where u s 
is a characteristic Stokes drift velocity [1] and u τ is the wind stress

friction velocity. 

3.1. Flat bottom surface 

We first simulate Langmuir turbulence boundary layers with a

flat bottom surface at La t = 0 . 7 and Re τ = 395 following [1] . The

Stokes drift velocity is chosen as φ = (u s 
cosh (2 κx 3 ) 

2 sinh 2 (2 κδ) 
, 0 , 0) T , where

κ is the dominant wave number. In present work, κ = 12 δ, u s , and

δ and ν are chosen such that the desired La t and Re τ are achieved.

Fig. 1 shows the problem setup. The computation domain

is a box with dimensions 2 πδ × 8 πδ
3 × 2 δ. The mesh consist of

32 × 32 × 34 C 1 -continuous quadratic NURBS elements. The el-

ements in the wall-normal direction ( x 3 ) are stretched towards

the top surface ( x 3 = 2 δ) and bottom surface ( x 3 = 0 ) to better

resolve the boundary layers. Periodic boundary condition is used

in the stream-wise ( x ) and crosswind ( x ) directions, representa-
1 2 

Fig. 6. Two representative Langmuir cells, visualized by partially averaged veloci
ive of open ocean conditions unaffected by lateral boundaries. No-

enetration boundary condition is applied at the top surface in ad-

ition to wind shear stress. No-slip condition is applied at the bot-

om surface through the weak enforcement of essential boundary

ondition approach (weak BC). For weak BC, we refer the readers

o [32,43] for the original development and [11,14,44–49] for sev-

ral applications to CFD and fluid-structure interaction (FSI) prob-

ems. 

To extract the crosswind-vertical ( x 2 –x 3 plane) flow structure,

he following triple decomposition is adopted. 

 i = 〈 u i 〉 + u 

′ 
i = 〈 u i 〉 + 〈 u 

′ 
i 〉 tx 1 + u 

′′ 
i (14)

here 〈 · 〉 without subscript denotes the averaging operation over

ime, the stream-wise and crosswind directions, 〈·〉 tx 1 denotes the

veraging operation over time and the stream-wise direction. So

he partially averaged fluctuation is given by u 
p 
i 

= 〈 u ′ 
i 
〉 tx 1 . (Note the

ubscript ′ here denotes fluctuation in Reynolds averaging, and not

he fine unresolved scales as in Eq. 5 .) 

Fig. 2 shows the partially averaged fluctuations of the veloc-

ty components in the stream-wise ( x 1 ), crosswind ( x 2 ), and wall-

ormal ( x 3 ) directions, normalized by the friction velocity u τ .

hese fluctuations reveal the resolution of a single Langmuir cell

ccupying the entire crosswind width of the domain. The Langmuir

ell structure can be observed in terms of crosswind and wall-

ormal components. The surface divergence of the cell corresponds

o the surface divergence of positive and negative crosswind veloc-

ty fluctuations. Furthermore, the surface divergence is positioned

irectly above the upwelling limb of the cell, characterized by pos-

tive wall-normal velocity fluctuations. These visualizations quali-

atively agree with the spectral LES results in [1] and field obser-

ations in [50] . Fig. 3 shows the mean velocity and turbulent ki-

etic energy (TKE) normalized by averaged center-line velocity ( U c )

long the wall direction (averaging is performed over time, stream-

ise, and crosswind directions). This problem was also simulated

sing a spectral LES with a higher resolution in [1] . The results

re also plotted in Fig. 3 for comparison. Excellent agreement is

chieved for the mean flow, and a reasonably good agreement is

chieved for the TKE for the mesh resolution employed here. 

.2. Sloped bottom surface 

To investigate the effect of seabed topography, we simulate

angmuir turbulence boundary layers over a sloped bottom sur-
ty fluctuations in crosswind direction ( u p 
2 

). Top: offshore. Bottom: onshore. 
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Fig. 7. Mean streamwise velocity for the sloped bottom surface. 
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Fig. 8. TKE for the sloped bottom surface. 
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ace. Fig. 4 shows the problem setup. The dimensions of the

tream-wise and crosswind directions are 32 π /3 and 40 π , respec-

ively. The domain is significantly longer in the stream-wise and

rosswind directions to allow resolution of multiple Langmuir cells.

he water depth changes from 2 δ to δ linearly from the offshore

o the onshore. The mesh consists of 64 × 144 × 34 C 1 -continuous

uadratic NURBS elements. 

The boundary conditions are the same as in the previous sec-

ion except no-penetration boundary condition is adopted for the

rosswind direction. The wind stress is parallel to the shore. The

esh is also stretched towards the top and bottom surfaces to

esolve the boundary layers better. Locally changing wind shear

tress is applied on the top surface to achieve constant friction

e τ = 395 with respect to the local water depth. The Stokes drift

elocity is defined as φ = (u s 
cosh (2 κx l 

3 
) 

2 sinh 2 (2 κδl ) 
, 0 , 0) T , where δl is the lo-

al water half depth and x l 
3 

is the local distance to the bottom sur-

ace. Note that the waves (Stokes drift) are aligned with the wind. 
The triple-decomposition in Eq. (14) is used again to ex-

ract the crosswind-vertical ( x 2 –x 3 plane) Langmuir cell structure.

ig. 5 shows the Langmuir cell size from offshore to onshore. The

ell size increases approaching onshore. We present two represen-

ative Langmuir cells, one offshore and one onshore, in Fig. 6 by

isualizing the partially averaged velocity fluctuations along the

rosswind ( x 2 ) direction. Fig. 6 also indicates that the center of

he cells slightly shifts to the onshore direction. Since the cross-

ind direction is no longer periodic, we quantify the mean veloc-

ty and turbulent kinetic energy (TKE) by only averaging over time

nd the stream-wise direction. Fig. 7 and Fig. 8 show mean veloc-

ty and TKE along three lines ( x 2 = 10 πδ, 20 πδ, and 30 πδ). The

ean velocity and TKE are normalized by the local center veloc-

ty U 

l 
c at the current x 2 coordinate. It can be seen that the vertical

ixing of momentum induced by the cells increases with decreas-

ng distance to the shore. Furthermore, the near bottom TKE also

ncreases with decreasing distance to the shore. 
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4. Conclusion 

We simulated Langmuir turbulent boundary layers in shal-

low water using a residual-based variational multi-scale formula-

tion (RBVMS) with quadratic NURBS basis functions. Simulations

showed the combination of RBVMS and IGA can produce accurate

results with a relatively coarse mesh. We quantified the turbu-

lence statistics, including partially averaged velocity fluctuations,

mean velocity, and TKE, of the Langmuir turbulent boundary lay-

ers over a sloped bottom surface. In an idealized setup with wind

and waves parallel to the shore, we found that the Langmuir cell

size increases with decreasing distance to the shore. For each cell,

the cell center shifts slightly to the onshore direction. The simula-

tions show the potential of the numerical methods for understand-

ing Langmuir turbulence in coastal regions, which is a fundamental

problem in coastal physical oceanography. In the future we hope to

make use of these numerical simulations to investigate Langmuir

turbulence under more realistic conditions by considering bottom

roughness, misaligned wind and waves and higher Reynolds num-

bers. 
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